polycistronic
简明释义
英[ˌpɒlɪsɪstrˈɒnɪk]美[ˌpɑːlɪsɪsˈtrɑːnɪk]
adj. 多顺反子性的
英英释义
Relating to a type of messenger RNA (mRNA) that can encode multiple proteins, typically found in prokaryotes. | 指一种信使RNA(mRNA),可以编码多个蛋白质,通常在原核生物中发现。 |
单词用法
多顺反子转录 | |
多顺反子表达 | |
多顺反子排列 | |
多顺反子系统 | |
在原核生物中,多顺反子 | |
多顺反子RNA分子 | |
多顺反子的特征 | |
多顺反子基因的功能 |
同义词
反义词
单顺反子 | 单顺反子mRNA包含一个开放阅读框。 |
例句
1.Objective to construct a polycistronic retroviral vector containing both subunits cDNA of murine IL 12 and NeoR gene and investigate their expressions in murine hepatoma cells.
目的构建含小鼠白细胞介素12双亚基及新霉素磷酸转移酶基因多顺反子逆转录病毒载体,并观察其在小鼠肝癌细胞中的表达。
2.Objective to construct a polycistronic retroviral vector containing both subunits cDNA of murine IL 12 and NeoR gene and investigate their expressions in murine hepatoma cells.
目的构建含小鼠白细胞介素12双亚基及新霉素磷酸转移酶基因多顺反子逆转录病毒载体,并观察其在小鼠肝癌细胞中的表达。
3.The polycistronic nature of prokaryotic mRNA allows for coordinated regulation of gene expression.
原核生物mRNA的多顺反子特性允许基因表达的协调调控。
4.The operon is a classic example of a polycistronic gene structure, where multiple genes are transcribed together.
操纵子是一个经典的多顺反子基因结构的例子,其中多个基因一起转录。
5.In bacteria, the mRNA produced from a polycistronic transcript can encode several proteins.
在细菌中,从多顺反子转录本产生的mRNA可以编码多个蛋白质。
6.Research has shown that polycistronic transcripts can enhance the efficiency of gene delivery in synthetic biology.
研究表明,多顺反子转录本可以提高合成生物学中基因传递的效率。
7.Understanding polycistronic arrangements can provide insights into bacterial operon functions.
理解多顺反子排列可以为细菌操纵子的功能提供见解。
作文
In the field of molecular biology, understanding the mechanisms of gene expression is crucial for unraveling the complexities of life. One interesting aspect of gene expression is the concept of polycistronic genes. These are genes that encode multiple proteins within a single mRNA molecule, allowing for the coordinated expression of related proteins. This is in contrast to monocistronic genes, which only produce one protein per mRNA transcript. The significance of polycistronic structures can be observed in prokaryotic organisms, such as bacteria, where they play a vital role in efficiently managing resources and responding to environmental changes.For instance, in the operon model, genes that are involved in a particular metabolic pathway are often clustered together and transcribed as a single unit. This means that when the cell needs to produce certain enzymes for a specific function, it can do so rapidly by creating one mRNA that contains all the necessary coding sequences. The polycistronic nature of these genes allows for a streamlined process, reducing the time and energy required for transcription and translation.Moreover, the regulation of polycistronic genes is also fascinating. In response to environmental stimuli, bacteria can activate or deactivate entire operons, thereby controlling the production of multiple proteins simultaneously. This level of regulation is critical for survival, as it enables organisms to adapt quickly to changing conditions without the need for individual regulation of each gene. For example, when nutrients are scarce, a bacterium might turn off an operon responsible for synthesizing amino acids that are no longer needed, while activating another operon that helps it utilize alternative energy sources.The study of polycistronic genes has broader implications beyond just prokaryotes. In recent years, researchers have discovered similar structures in eukaryotic organisms, particularly in certain types of viruses and in some plants. Understanding these polycistronic arrangements can provide insights into evolutionary processes and the development of complex regulatory networks in higher organisms.Furthermore, the concept of polycistronic genes has practical applications in biotechnology and synthetic biology. By harnessing the principles of polycistronic transcription, scientists can design genetic constructs that produce multiple proteins from a single mRNA, which can be beneficial for producing therapeutic proteins or enzymes in industrial processes. This approach can lead to more efficient production systems and lower costs, making it a valuable tool in modern biotechnology.In conclusion, the term polycistronic refers to a fascinating aspect of gene expression that highlights the efficiency and adaptability of biological systems. By encoding multiple proteins in a single mRNA molecule, polycistronic genes allow organisms to respond swiftly to environmental changes and manage resources effectively. As our understanding of these structures continues to grow, so too does their potential impact on science and industry, paving the way for innovative solutions to complex biological challenges.
在分子生物学领域,理解基因表达的机制对于揭示生命的复杂性至关重要。基因表达的一个有趣方面是多顺反子基因的概念。这些基因在单个mRNA分子中编码多个蛋白质,从而允许相关蛋白质的协调表达。这与单顺反子基因相对立,后者每个mRNA转录本只能产生一种蛋白质。多顺反子结构的重要性可以在原核生物(如细菌)中观察到,在那里它们在有效管理资源和应对环境变化方面发挥着重要作用。例如,在操纵子模型中,参与特定代谢通路的基因通常聚集在一起并作为一个单元转录。这意味着当细胞需要产生某些酶以执行特定功能时,它可以通过创建一个包含所有必要编码序列的mRNA来迅速完成。多顺反子基因的特性使这一过程简化,减少了转录和翻译所需的时间和能量。此外,多顺反子基因的调控也很有趣。作为对环境刺激的响应,细菌可以激活或失活整个操纵子,从而同时控制多种蛋白质的生产。这种调控水平对生存至关重要,因为它使生物体能够快速适应不断变化的条件,而无需对每个基因进行单独调控。例如,当营养物质稀缺时,细菌可能会关闭一个负责合成不再需要的氨基酸的操纵子,同时激活另一个帮助其利用替代能源的操纵子。对多顺反子基因的研究在原核生物之外也有更广泛的意义。近年来,研究人员发现某些类型的病毒和某些植物中也存在类似的结构。理解这些多顺反子排列可以为进化过程和更高生物体复杂调控网络的发展提供见解。此外,多顺反子基因的概念在生物技术和合成生物学中具有实际应用。通过利用多顺反子转录的原理,科学家可以设计出从单个mRNA中产生多种蛋白质的基因构建体,这对于在工业过程中生产治疗性蛋白质或酶可能是有益的。这种方法可以导致更高效的生产系统和更低的成本,使其成为现代生物技术中的一种宝贵工具。总之,多顺反子一词指的是基因表达的一个迷人方面,突显了生物系统的效率和适应性。通过在单个mRNA分子中编码多种蛋白质,多顺反子基因使生物体能够迅速响应环境变化并有效管理资源。随着我们对这些结构理解的不断深入,它们对科学和工业的潜在影响也在不断增长,为应对复杂的生物挑战铺平了道路。