piezomagnetic
简明释义
英[ˌpiːəʊzəʊmæɡˈnɛtɪk]美[ˌpiːoʊzəʊmæɡˈnɛtɪk]
压磁
压磁的
英英释义
Relating to a property of certain materials that exhibit magnetic effects in response to applied mechanical stress. | 与某些材料的特性有关,这些材料在施加机械应力时表现出磁效应。 |
单词用法
压电磁传感器 | |
压电磁响应 | |
压电磁现象的研究 | |
压电磁材料的应用 |
同义词
磁致伸缩的 | Magnetostrictive materials are often used in sensors and actuators. | 磁致伸缩材料常用于传感器和执行器。 | |
压电的 | Piezoelectric devices convert mechanical energy into electrical energy. | 压电设备将机械能转化为电能。 |
反义词
抗磁性 | 抗磁性材料会被磁场排斥。 | ||
顺磁性 | 顺磁性物质会被磁场吸引。 |
例句
1.The generation of the magnetic signals at LF band may be caused by the emission of electrons from the breaking crystals in the rocks, whereas that of ULF band by the piezomagnetic effect.
微破裂可能产生了偶电层,在破裂过程中向外辐射,产生了LF频段的磁信号,UL F磁信号则主要由压磁效应产生。
2.Piezoelectric and piezomagnetic composites are a new type of functional material, which has far bigger magnetoelectric effect than a single phase material.
压磁-压电复合材料是一种新型的多功能材料,兼具压电性和压磁性,磁电耦合效应远高于单相材料。
3.The generation of the magnetic signals at LF band may be caused by the emission of electrons from the breaking crystals in the rocks, whereas that of ULF band by the piezomagnetic effect.
微破裂可能产生了偶电层,在破裂过程中向外辐射,产生了LF频段的磁信号,UL F磁信号则主要由压磁效应产生。
4.When strain waves pass through a ferromagnetic bar, owing to piezomagnetic effect, a nonuniform magnetic current will be stimulated by the strain wave simultaneously.
应变波通过铁磁性杆件时,由于压磁效应,可以激发出不均匀的磁流。
5.The films is very sensitive to change of microstress, and in the nature of low-frequency piezomagnetic property.
薄膜对微应力变化非常敏感,具有低频压磁特性。
6.By incorporating piezomagnetic materials, the performance of the actuator was significantly improved.
通过加入压磁材料,执行器的性能显著提高。
7.The application of piezomagnetic effects in electronic devices is a growing field of study.
在电子设备中应用压磁效应是一个不断增长的研究领域。
8.Researchers are exploring the piezomagnetic properties of certain alloys for better energy harvesting.
研究人员正在探索某些合金的压磁特性,以便更好地收集能量。
9.The piezomagnetic response of the material is crucial for its application in sensors.
该材料的压磁响应对其在传感器中的应用至关重要。
10.The new sensor utilizes piezomagnetic materials to enhance its sensitivity.
新传感器利用压磁材料来提高其灵敏度。
作文
The fascinating world of materials science often introduces us to terms that may seem complex at first glance, yet they hold significant importance in various applications. One such term is piezomagnetic, a word that combines the principles of piezoelectricity and magnetism. To understand piezomagnetic materials, we must first delve into the individual components of this term. Piezoelectricity refers to the ability of certain materials to generate an electric charge in response to applied mechanical stress. This phenomenon is commonly observed in crystals like quartz and certain ceramics. On the other hand, magnetism is the property of materials that respond to magnetic fields, which can be either ferromagnetic or paramagnetic in nature.When we talk about piezomagnetic materials, we are referring to substances that exhibit both piezoelectric and magnetic properties simultaneously. These materials can convert mechanical energy into magnetic energy and vice versa. The potential applications for piezomagnetic materials are vast and varied, spanning from sensors to actuators, and even in advanced computing technologies.One of the most exciting applications of piezomagnetic materials is in the development of smart sensors. These sensors can detect changes in pressure or mechanical stress while simultaneously responding to magnetic fields. For instance, imagine a sensor embedded in a structure that can monitor its own health by detecting stress and strain, all while being influenced by external magnetic fields. This capability not only enhances the safety and reliability of buildings and bridges but also opens up new avenues for research in structural engineering.Moreover, piezomagnetic materials have shown promise in the field of energy harvesting. By utilizing the mechanical vibrations present in our environment—such as those generated by footsteps or machinery—these materials can convert kinetic energy into electrical energy. This feature is particularly useful in powering small electronic devices or sensors in remote locations where traditional power sources are unavailable.In addition to their practical applications, piezomagnetic materials also present intriguing opportunities for fundamental research. Scientists are exploring the underlying mechanisms that govern the interaction between mechanical stress and magnetism at the molecular level. Understanding these interactions could lead to the discovery of new materials with enhanced properties, paving the way for innovations in technology.Furthermore, the integration of piezomagnetic materials into existing technologies can lead to improved performance. For example, in the realm of data storage, researchers are investigating how piezomagnetic effects can be utilized to create more efficient magnetic memory devices. The potential for faster data access and lower energy consumption makes this area of study particularly appealing to the tech industry.In conclusion, the term piezomagnetic encapsulates a fascinating intersection of physics and engineering, representing materials that possess the unique ability to respond to both mechanical and magnetic stimuli. As we continue to explore the capabilities of piezomagnetic materials, we unlock doors to innovative technologies that can significantly impact various industries. From smart sensors to energy harvesting systems, the future looks promising for the application of piezomagnetic materials, underscoring the importance of interdisciplinary research in advancing our understanding of the physical world. Understanding piezomagnetic materials is not just an academic exercise; it is a gateway to harnessing the power of nature in ways we have yet to fully realize.
材料科学的迷人世界常常向我们介绍一些乍看之下可能显得复杂的术语,但这些术语在各种应用中具有重要意义。其中一个术语是piezomagnetic,这个词结合了压电和磁性的原理。要理解piezomagnetic材料,我们首先必须深入了解这个术语的各个组成部分。压电性是指某些材料在施加机械应力时产生电荷的能力。这种现象通常在石英和某些陶瓷等晶体中观察到。另一方面,磁性是材料对磁场的响应特性,可以是铁磁性或顺磁性。当我们谈论piezomagnetic材料时,我们指的是同时展现压电性和磁性特性的物质。这些材料可以将机械能转换为磁能,反之亦然。piezomagnetic材料的潜在应用广泛而多样,从传感器到执行器,甚至在先进的计算技术中都有涉及。piezomagnetic材料最令人兴奋的应用之一是在智能传感器的发展中。这些传感器能够检测压力或机械应力的变化,同时对磁场作出响应。例如,想象一下嵌入结构中的传感器,能够通过检测应力和变形来监测其自身的健康,同时受到外部磁场的影响。这种能力不仅增强了建筑物和桥梁的安全性和可靠性,还为结构工程领域的研究开辟了新的途径。此外,piezomagnetic材料在能量收集领域也显示出前景。通过利用我们环境中存在的机械振动——例如由脚步声或机械设备产生的振动——这些材料可以将动能转化为电能。这一特性在为小型电子设备或在传统电源无法使用的偏远地区的传感器供电时尤为有用。除了它们的实际应用之外,piezomagnetic材料还为基础研究提供了有趣的机会。科学家们正在探索在分子层面上支配机械应力与磁性之间相互作用的基本机制。理解这些相互作用可能导致新材料的发现,这些材料具有更强的特性,为技术创新铺平道路。此外,将piezomagnetic材料整合到现有技术中可以提高性能。例如,在数据存储领域,研究人员正在调查如何利用piezomagnetic效应来创造更高效的磁性存储设备。更快的数据访问和更低的能耗的潜力使这一研究领域对科技行业特别具有吸引力。总之,piezomagnetic这一术语概括了物理学和工程学的迷人交汇点,代表了具有独特能力的材料,能够同时响应机械和磁性刺激。随着我们继续探索piezomagnetic材料的能力,我们打开了创新技术的大门,这些技术可以显著影响各个行业。从智能传感器到能量收集系统,piezomagnetic材料的应用前景看起来非常乐观,这突显了跨学科研究在推动我们理解物理世界方面的重要性。理解piezomagnetic材料不仅仅是学术上的练习;这是一扇通往以我们尚未完全意识到的方式利用自然力量的大门。