multiphoton

简明释义

[ˈmʌltiˌfoʊtən][ˈmʌltiˌfoʊtən]

adj. 多光子的

英英释义

Multiphoton refers to a process or phenomenon involving the simultaneous absorption or emission of multiple photons, often used in contexts such as multiphoton excitation in microscopy.

多光子指的是一种过程或现象,涉及多个光子的同时吸收或发射,通常用于如显微镜中的多光子激发等上下文。

单词用法

同义词

multi-photon

多光子

Multi-photon excitation microscopy is a powerful imaging technique.

多光子激发显微镜是一种强大的成像技术。

multiple photon

多个光子

The study of multiple photon interactions is crucial in quantum optics.

多个光子相互作用的研究在量子光学中至关重要。

反义词

single photon

单光子

The experiment utilized a single photon source to demonstrate quantum properties.

实验利用单光子源来展示量子特性。

monophoton

单光子

In contrast to multiphoton processes, monophoton interactions are easier to analyze.

与多光子过程相比,单光子相互作用更容易分析。

例句

1.Some quantum effects in the multiphoton interaction processes of a three-level A-shaped atom with two squeezed modes are studied in detail.

本文研究了具有A型跃迁结构的三能级原子与两个压缩态光场多光子相互作用过程中的一些量子效应。

2.Then the formula of the multiphoton resonance ionization in a linear polarization laser field was obtained and it is compared with the experiment.

以线极化光场为例,得到了多光子共振电离公式,并与实验进行了比较。

3.In addition, we have analyzed the multiphoton ionization dissociation(MPID) mechanism of H 2S from several aspects, and conclude that its MPID process belongs to parent ion fragmentation mechanism.

另外还从多个角度对硫化氢分子的多光子电离解离(MPID)机理进行了分析,推论出其MPID过程应属于母体离子碎裂模式。

4.The multiphoton ionization results of pyrimidine-methanol and pyridazine-methanol clusters are presented for the first time.

首次研究并获得了嘧啶甲醇以及哒嗪甲醇氢键团簇的多光子实验研究结果。

5.Characteristics of infrared multiphoton dissociation of ethanol molecules were investigated experimentally.

实验研究了乙醇分子的红外多光子离解特性。

6.We report the hard and software systems for measuring multiphoton ionization spectra.

本文报道了测量多光于电离谱的一整套硬件和软件系统。

7.The polarized characteristic of multiphoton process can be used to assign the symmetries of electronic states and vibrational structures.

多光子过程的偏振特性可以用来标识电子态及振动结构的对称性。

8.A intracavity multiphoton absorber in driven optical systems is a effective means to depress the internal field fluctuation.

在受驱动光学系统中增设内腔多光子吸收元件是抑制腔场噪声的有效手段。

9.We studied the dressed effects of atom for multiphoton Free-Free transition in this paper.

在本文中,我们研究了多光子自由-自由跃迁中原子的修饰效应。

10.The multiphoton microscope allows researchers to visualize living cells in real-time.

多光子显微镜使研究人员能够实时可视化活细胞。

11.The multiphoton process is essential for understanding the interactions between light and matter.

多光子过程对理解光与物质之间的相互作用至关重要。

12.Researchers employed multiphoton laser scanning to map neural activity in the brain.

研究人员采用多光子激光扫描技术来绘制大脑中的神经活动。

13.In quantum optics, multiphoton entanglement is a key phenomenon for developing advanced technologies.

在量子光学中,多光子纠缠是开发先进技术的关键现象。

14.Using multiphoton excitation, scientists can achieve greater imaging depth in biological tissues.

利用多光子激发,科学家可以在生物组织中实现更大的成像深度。

作文

In recent years, the field of quantum optics has gained significant attention due to its potential applications in various technologies. One of the most intriguing phenomena in this field is the concept of multiphoton (多光子) processes. These processes involve the simultaneous interaction of multiple photons with matter, leading to unique outcomes that cannot be achieved through single-photon interactions. Understanding multiphoton (多光子) phenomena is essential for advancements in areas such as quantum computing, imaging techniques, and even medical diagnostics.The essence of multiphoton (多光子) processes lies in their ability to manipulate light at a fundamental level. In traditional optics, we often deal with single photons, which can be understood using classical theories. However, when we delve into the realm of multiphoton (多光子) interactions, we enter a world governed by quantum mechanics. This shift in perspective allows scientists to explore new ways of harnessing light for practical applications.One of the most notable applications of multiphoton (多光子) technology is in the field of microscopy. Multiphoton microscopy leverages the principles of multiphoton (多光子) excitation to achieve high-resolution imaging of biological samples. Unlike conventional fluorescence microscopy, which can only excite fluorophores with a single photon, multiphoton microscopy uses two or more photons to excite the same fluorophore. This results in less photodamage to the sample and deeper tissue penetration, making it an invaluable tool for researchers studying live cells and complex biological systems.Furthermore, multiphoton (多光子) processes are not limited to imaging; they also play a crucial role in quantum information science. Quantum computing relies on the manipulation of quantum bits, or qubits, which can exist in multiple states simultaneously. Multiphoton (多光子) entanglement is a phenomenon where pairs or groups of photons become interconnected in such a way that the state of one photon can instantly affect the state of another, regardless of the distance separating them. This property is fundamental for developing secure communication protocols and enhancing computational power.In addition to their applications in imaging and quantum computing, multiphoton (多光子) processes have implications in the field of medicine. For instance, researchers are exploring the use of multiphoton (多光子) therapy for targeted drug delivery. By using multiphoton (多光子) activation, drugs can be released at specific sites within the body, minimizing side effects and improving treatment efficacy. This innovative approach holds promise for cancer therapies and other localized treatments.Moreover, the study of multiphoton (多光子) interactions has led to advancements in the development of new materials. Photonic crystals and metamaterials, which exhibit unique optical properties, often rely on multiphoton (多光子) processes for their fabrication. By understanding how multiple photons interact with these materials, scientists can design structures that manipulate light in unprecedented ways.In conclusion, the exploration of multiphoton (多光子) processes opens up a myriad of possibilities across various scientific disciplines. From revolutionizing imaging techniques to advancing quantum technologies and medical applications, the implications of multiphoton (多光子) research are profound. As we continue to unravel the complexities of light-matter interactions, the potential for innovation and discovery remains limitless. The journey into the world of multiphoton (多光子) phenomena is just beginning, and it promises to reshape our understanding of both science and technology in the years to come.

近年来,由于其在各类技术中的潜在应用,量子光学领域受到了显著关注。在这个领域中,一个最引人入胜的现象是multiphoton(多光子)过程的概念。这些过程涉及多个光子与物质的同时相互作用,导致无法通过单光子相互作用实现的独特结果。理解multiphoton(多光子)现象对于量子计算、成像技术甚至医学诊断等领域的进步至关重要。multiphoton(多光子)过程的本质在于其能够在基本层面上操控光。在传统光学中,我们通常处理单个光子,这可以通过经典理论来理解。然而,当我们深入到multiphoton(多光子)相互作用的领域时,我们进入了一个由量子力学支配的世界。这种视角的转变使科学家们能够探索利用光进行实际应用的新方法。multiphoton(多光子)技术最显著的应用之一是在显微镜学领域。多光子显微镜利用multiphoton(多光子)激发的原理,实现生物样本的高分辨率成像。与传统荧光显微镜只能用单个光子激发荧光染料不同,多光子显微镜使用两个或更多光子激发同一荧光染料。这导致对样本的光损伤更少,并且能够更深地穿透组织,使其成为研究活细胞和复杂生物系统的宝贵工具。此外,multiphoton(多光子)过程不仅限于成像;它们在量子信息科学中也发挥着至关重要的作用。量子计算依赖于量子比特(qubit)的操控,量子比特可以同时存在于多个状态中。multiphoton(多光子)纠缠是一种现象,其中成对或成组的光子以某种方式相互连接,使得一个光子的状态可以瞬时影响另一个光子的状态,无论它们之间的距离有多远。这一特性对开发安全通信协议和增强计算能力至关重要。除了在成像和量子计算中的应用外,multiphoton(多光子)过程在医学领域也有重要意义。例如,研究人员正在探索使用multiphoton(多光子)疗法进行靶向药物输送。通过使用multiphoton(多光子)激活,药物可以在体内的特定部位释放,从而最小化副作用并提高治疗效果。这种创新的方法在癌症治疗和其他局部治疗中具有前景。此外,multiphoton(多光子)相互作用的研究推动了新材料的发展。光子晶体和超材料等独特光学特性的材料,往往依赖于multiphoton(多光子)过程进行制造。通过理解多个光子如何与这些材料相互作用,科学家们可以设计出以前所未有的操控光的结构。总之,探索multiphoton(多光子)过程在各科学领域中打开了无数可能性。从彻底改变成像技术到推进量子技术和医学应用,multiphoton(多光子)研究的含义深远。随着我们继续揭示光与物质相互作用的复杂性,创新和发现的潜力仍然是无限的。进入multiphoton(多光子)现象的世界之旅才刚刚开始,它承诺将在未来几年重塑我们对科学和技术的理解。