multinomial
简明释义
英[ˌmʌltiˈnəʊmiəl]美[ˌmʌltɪˈnomɪəl]
adj. 多项的
n. 多项式
英英释义
单词用法
多项式逻辑回归 | |
多项式模型 | |
多项实验 | |
拟合多项式模型 | |
分析多项数据 | |
应用多项式定理 |
同义词
反义词
单项式 | 单项式是只有一个项的多项式。 | ||
单变量的 | In statistics, univariate analysis involves only one variable. | 在统计学中,单变量分析只涉及一个变量。 |
例句
1.This paper USES multinomial algebra theory to design the smallest finite time servo system. It can completely follow in the wake of command.
因此以一种新的方法,即利用多项式代数理论设计出能完全跟踪目标值的有限签定时间伺服系统。
2.Aim To study the identities of the first and second Chebyshev multinomial.
目的研究第一类、第二类契贝谢夫多项式的一些恒等式。
3.The conventional Archie? S formula is considered as a particular form of multinomial. The identification and classification methods of rock wettability are given.
提出常规阿尔奇公式是多项式的特殊形式,给出了岩石润湿性的识别和分类解释方法。
4.It is proved that K-Tree Term method is a multinomial time complexity algorithm.
着重证明了K -树组法为多项式时间复杂性算法。
5.In this paper, a method, called multinomial regression for forecasting for ultimate bearing capacity of singe pile with static load experiment is proposed.
介绍了一种单桩静载荷试验极限承载力的预测法——多项式回归法。
6.The paper proved the Hamilton-Cayley theorem in complex number space, and indicated the all matrix root of the sign multinomial of matrix A.
本文在复数域上证明了哈密尔顿-凯莱定理,并给出方阵A的特征多项式的全部矩阵根。
7.IBM is large it product and service provider, its product and service involve multinomial field.
IBM是大型的IT产品及服务提供商,其产品及服务涉及多项领域。
8.Two-rank Tailor multinomial has been introduced to decrease cutting errors in subset displacement mode;
在子区位移模式中采用了二阶泰勒多项式表示位移,降低了截断误差;
9.In the multinomial voting model, the economic evaluation that affects the voting choices is not the main factor.
然而在投票模型中,个人与国家的经济评估并不是主要影响投票抉择的因素。
10.A common application of the multinomial 多项式 theorem is in calculating combinations of different items.
多项式 定理的一个常见应用是计算不同物品的组合。
11.In statistics, we often use a multinomial 多项式 distribution to model the probabilities of different outcomes.
在统计学中,我们常常使用 多项式 分布来建模不同结果的概率。
12.The multinomial 多项式 regression can help us understand the relationship between multiple categorical variables.
多项式 回归可以帮助我们理解多个分类变量之间的关系。
13.When analyzing survey data, we might apply a multinomial 多项式 logistic regression model.
在分析调查数据时,我们可能会应用 多项式 逻辑回归模型。
14.In machine learning, multinomial 多项式 naive Bayes classifiers are used for text classification tasks.
在机器学习中,多项式 朴素贝叶斯分类器用于文本分类任务。
作文
In the realm of mathematics, understanding various types of expressions is crucial for solving complex problems. One such expression is the multinomial, which refers to a polynomial with more than two terms. This concept is not only fundamental in algebra but also plays a significant role in statistics and probability theory. To grasp the essence of a multinomial, we must first delve into its components and applications.A multinomial can be expressed in the form a1x^n1 + a2x^n2 + ... + akx^nk, where each ai represents a coefficient, xi is a variable, and ni denotes the exponent of the variable. For instance, the expression 3x^2 + 5x + 7 is a multinomial because it contains three distinct terms. Each term contributes to the overall value of the expression when evaluated for different values of x. Understanding how to manipulate and factor multinomials is essential for students as they progress in their mathematical studies.One of the most significant applications of multinomials is in the field of probability. The multinomial theorem generalizes the binomial theorem, allowing us to expand expressions that involve multiple variables raised to powers. This is particularly useful when dealing with experiments that have more than two possible outcomes. For example, if we consider an experiment where we roll a die, the outcomes can be represented as a multinomial expansion. Each face of the die corresponds to a term in the multinomial, and the probabilities of rolling each face can be incorporated into the coefficients of the terms.Moreover, multinomials are not limited to theoretical applications; they also appear in real-world scenarios. In economics, for instance, market analysis often involves multinomial models to predict consumer behavior based on multiple factors such as price, quality, and brand loyalty. By employing multinomial logistic regression, analysts can assess the likelihood of different outcomes based on these variables, thus providing valuable insights for businesses.In addition to their practical applications, multinomials serve as a bridge to more advanced topics in mathematics. As students explore calculus and beyond, they encounter multinomials in the context of Taylor series, where functions are expressed as infinite sums of multinomial terms. This connection highlights the importance of mastering multinomials early on, as they lay the groundwork for understanding more complex mathematical concepts.In conclusion, the study of multinomials is integral to the broader field of mathematics. From their definition as polynomials with multiple terms to their applications in probability and economics, multinomials provide a versatile tool for problem-solving and analysis. As students continue their mathematical journey, a solid understanding of multinomials will undoubtedly enhance their ability to tackle diverse challenges and appreciate the beauty of mathematics. Therefore, educators should emphasize the significance of multinomials in their curricula, ensuring that students are well-equipped to engage with this essential mathematical concept.
在数学领域,理解各种类型的表达式对于解决复杂问题至关重要。其中一个表达式是multinomial,它指的是一个多于两个项的多项式。这个概念不仅在代数中是基础,而且在统计学和概率论中也发挥着重要作用。要掌握multinomial的本质,我们首先必须深入了解它的组成部分和应用。multinomial可以表示为a1x^n1 + a2x^n2 + ... + akx^nk,其中每个ai代表一个系数,xi是一个变量,ni表示变量的指数。例如,表达式3x^2 + 5x + 7是一个multinomial,因为它包含三个不同的项。当对不同的x值进行评估时,每个项都会对整体表达式的值做出贡献。理解如何操作和因式分解multinomial对学生来说是他们在数学学习中进步的关键。multinomial最重要的应用之一是在概率领域。多项式定理推广了二项式定理,使我们能够扩展涉及多个变量的表达式。这在处理具有多个可能结果的实验时尤其有用。例如,如果我们考虑一个掷骰子的实验,结果可以表示为multinomial展开。骰子的每一面对应于multinomial中的一项,而每一面出现的概率可以纳入这些项的系数中。此外,multinomials不仅限于理论应用;它们在现实世界场景中也会出现。在经济学中,例如,市场分析通常涉及multinomial模型,以根据价格、质量和品牌忠诚度等多个因素预测消费者行为。通过采用multinomial逻辑回归,分析师可以评估基于这些变量的不同结果的可能性,从而为企业提供有价值的见解。除了实际应用,multinomials还作为数学中更高级主题的桥梁。当学生探索微积分及其后续课程时,他们会在泰勒级数的上下文中遇到multinomials,其中函数被表示为无限和的multinomial项。这一联系突显了尽早掌握multinomials的重要性,因为它们为理解更复杂的数学概念奠定了基础。总之,研究multinomials是数学更广泛领域不可或缺的一部分。从它们作为多个项的多项式的定义到它们在概率和经济学中的应用,multinomials为解决问题和分析提供了一种多功能工具。随着学生继续他们的数学旅程,扎实理解multinomials无疑会增强他们应对各种挑战的能力,并欣赏数学的美丽。因此,教育工作者应在课程中强调multinomials的重要性,确保学生能够充分参与这一基本数学概念。