ionisation

简明释义

[ˌaɪənaɪˈzeɪʃən][ˌaɪənəˈzeɪʃn]

n. 电离作用(等于 ionization)

英英释义

The process by which an atom or a molecule gains or loses an electron, resulting in the formation of an ion.

原子或分子获得或失去电子的过程,导致离子的形成。

单词用法

ionisation chamber

离子化室

ionisation rate

离子化率

photoionisation

光离子化

thermal ionisation

热离子化

electron ionisation

电子离子化

ionisation of atoms

原子的离子化

ionisation by radiation

辐射引起的离子化

ionisation in gases

气体中的离子化

complete ionisation

完全离子化

partial ionisation

部分离子化

同义词

ionization

离子化

The ionization of the gas increased the conductivity.

气体的离子化增加了导电性。

反义词

neutralization

中和

The process of neutralization is crucial in acid-base reactions.

中和过程在酸碱反应中至关重要。

recombination

复合

Recombination of ions can lead to the formation of neutral molecules.

离子的复合可以导致中性分子的形成。

例句

1.This new technique relies on using desorption ionisation mass spectrometry to test different spots on the banknote.

集中光谱测定技术是通过使用解吸附电离集中光谱测定术来检测钞票的不同部位。

2.The air could have different electric charging and the ionisation processus of atmosphere is very heterogenous.

空气可以有不同的收费和电离电突气氛是很不均匀。

3.The ionisation of the low atmosphere could also be the effect of the radioactive emissions of the Earth, especially when the X radiation works.

大气中的低电离能也将是影响的地球放射性排放量,尤其是当X射线辐射工程。

4.Under the best conditions by means of hydrogen flame ionisation detector, 101 white silylation carrier a and se-30 anchored phase edc., the good results have been obtained.

试验采用氢火焰离子化检测器、101硅烷化白色载体和SE—30固定相等最佳条件,获得了较为满意的结果。

5.Therefore this additive is superior to those with low ionisation potential.

这种添加剂比低电离电位蒸汽添加剂优越。

6.Under the best conditions by means of hydrogen flame ionisation detector, 101 white silylation carrier a and se-30 anchored phase edc., the good results have been obtained.

试验采用氢火焰离子化检测器、101硅烷化白色载体和SE—30固定相等最佳条件,获得了较为满意的结果。

7.In mass spectrometry, ionisation 离子化 is crucial for analyzing the composition of a sample.

在质谱分析中,ionisation 离子化对样品成分的分析至关重要。

8.The process of ionisation 离子化 in gases can lead to the formation of plasma.

气体中的ionisation 离子化过程可以导致等离子的形成。

9.High temperatures can increase the rate of ionisation 离子化 in a gas.

高温可以提高气体中ionisation 离子化的速率。

10.The ionisation 离子化 process is essential in the functioning of fluorescent lights.

在荧光灯的工作中,ionisation 离子化过程是必不可少的。

11.The ionisation 离子化 energy of an atom is the energy required to remove an electron.

原子的ionisation 离子化能是移除一个电子所需的能量。

作文

Ionisation is a fundamental process in various fields of science, particularly in chemistry and physics. It refers to the process by which an atom or a molecule gains or loses electrons, resulting in the formation of ions. The significance of ionisation (电离) cannot be overstated, as it plays a crucial role in numerous natural phenomena and technological applications. For example, in the field of chemistry, ionisation (电离) is essential for understanding chemical reactions, especially in solutions where ionic compounds dissolve in water. When these compounds dissolve, they dissociate into their constituent ions, which can then interact with other molecules, facilitating various chemical reactions. This process is vital for biological systems as well, as many biochemical reactions depend on the presence of ions such as sodium, potassium, and calcium.In physics, ionisation (电离) is critical in understanding how matter interacts with radiation. When high-energy particles or photons collide with atoms, they can knock out electrons, leading to ionisation (电离). This is particularly important in fields such as astrophysics, where the ionisation of gases in stars affects their temperature and luminosity. The study of ionisation (电离) also has practical applications in technologies such as mass spectrometry, where ions are generated from samples to analyze their composition.Moreover, ionisation (电离) is a key concept in the development of various types of detectors used in nuclear physics and radiation safety. For instance, Geiger counters operate based on the principle of ionisation (电离), where incoming radiation causes gas atoms within the detector to become ionised, allowing the detection of radiation levels. This application highlights the importance of ionisation (电离) in ensuring safety in environments where radiation is present.The process of ionisation (电离) can occur through several mechanisms, including thermal energy, photon absorption, and collisions with other particles. Each mechanism has its own implications and applications. For example, in the case of thermal ionisation (电离), high temperatures can provide enough energy to free electrons from atoms, which is crucial in understanding stellar processes. On the other hand, photon-induced ionisation (电离) is significant in the study of light-matter interactions, which has implications in fields such as photochemistry and solar energy.Furthermore, the degree of ionisation (电离) can vary depending on the conditions, such as temperature and pressure. Understanding these factors is essential for scientists and engineers working in fields that rely on ionic processes. For instance, in plasma physics, which deals with ionised gases, the control of ionisation (电离) levels is crucial for applications like fusion energy and advanced manufacturing processes.In conclusion, ionisation (电离) is a vital process that underpins many scientific disciplines and technological advancements. Its role in chemical reactions, physical interactions, and practical applications makes it a topic worthy of study and understanding. As technology continues to evolve, the importance of ionisation (电离) will likely grow, further emphasizing the need for ongoing research and exploration in this fascinating area of science.

电离是科学的一个基本过程,尤其是在化学和物理学领域。它指的是原子或分子获得或失去电子的过程,从而形成离子。ionisation(电离)的重要性不容小觑,因为它在许多自然现象和技术应用中起着关键作用。例如,在化学领域,ionisation(电离)对于理解化学反应至关重要,特别是在溶液中,离子化合物溶解在水中。当这些化合物溶解时,它们会解离成其组成离子,然后可以与其他分子相互作用,从而促进各种化学反应。这个过程对生物系统也是至关重要的,因为许多生化反应依赖于钠、钾和钙等离子的存在。在物理学中,ionisation(电离)对于理解物质如何与辐射相互作用至关重要。当高能粒子或光子与原子碰撞时,它们可以敲出电子,导致ionisation(电离)。这在天体物理学等领域尤为重要,因为气体中的电离影响着恒星的温度和亮度。对ionisation(电离)的研究在核物理和辐射安全等技术的开发中也具有实际应用。例如,盖革计数器基于ionisation(电离)的原理工作,入射辐射导致探测器内的气体原子被电离,从而允许检测辐射水平。这一应用突显了ionisation(电离)在确保辐射存在环境中的安全性的重要性。ionisation(电离)过程可以通过几种机制发生,包括热能、光子吸收和与其他粒子的碰撞。每种机制都有其自身的影响和应用。例如,在热ionisation(电离)的情况下,高温可以提供足够的能量使电子从原子中释放出来,这对于理解恒星过程至关重要。另一方面,光子诱导的ionisation(电离)在光-物质相互作用的研究中具有重要意义,这在光化学和太阳能等领域具有重要意义。此外,ionisation(电离)的程度可能会根据条件(如温度和压力)而变化。理解这些因素对于在依赖于离子过程的领域工作的科学家和工程师至关重要。例如,在等离子体物理学中,处理电离气体,控制ionisation(电离)水平对于融合能源和先进制造过程等应用至关重要。总之,ionisation(电离)是一个重要的过程,支撑着许多科学学科和技术进步。它在化学反应、物理相互作用和实际应用中的作用使其成为一个值得研究和理解的话题。随着技术的不断发展,ionisation(电离)的重要性可能会进一步增长,进一步强调了在这一迷人科学领域进行持续研究和探索的必要性。