aeromechanics
简明释义
英[ˌeərəʊmɪˈkænɪks]美[ˌeroʊmɪˈkænɪks]
n. 航空力学;空气力学
英英释义
单词用法
空气动力学研究 | |
空气动力学分析 | |
计算空气动力学 | |
实验空气动力学 |
同义词
反义词
流体力学 | 流体力学研究流体运动的行为。 | ||
土力学 | Geomechanics is essential for understanding soil stability and structure. | 土力学对于理解土壤的稳定性和结构至关重要。 |
例句
1.The study of aeromechanics 空气动力学 is essential for designing efficient aircraft.
研究aeromechanics 空气动力学 对于设计高效的飞机至关重要。
2.Engineers use principles of aeromechanics 空气动力学 to improve the performance of rockets.
工程师利用aeromechanics 空气动力学 原理来提高火箭的性能。
3.The field of aeromechanics 空气动力学 combines fluid dynamics and structural analysis.
aeromechanics 空气动力学 领域结合了流体动力学和结构分析。
4.Understanding aeromechanics 空气动力学 helps in predicting how an aircraft will react to turbulence.
理解aeromechanics 空气动力学 有助于预测飞机如何应对湍流。
5.Research in aeromechanics 空气动力学 has led to significant advancements in drone technology.
在aeromechanics 空气动力学 的研究推动下,无人机技术取得了重大进展。
作文
Aeromechanics is a fascinating field that combines the principles of fluid dynamics and solid mechanics to study the behavior of objects moving through air. This discipline plays a crucial role in the design and analysis of various airborne vehicles, including airplanes, helicopters, and drones. Understanding aeromechanics (空气动力学) is essential for engineers and scientists who aim to improve the efficiency, safety, and performance of these vehicles.The study of aeromechanics (空气动力学) involves the examination of forces acting on a body as it moves through the atmosphere. These forces include lift, drag, thrust, and weight. Lift is the force that enables an aircraft to rise into the air, while drag is the resistance encountered as the vehicle moves forward. Thrust, generated by engines, propels the aircraft, and weight is the force due to gravity acting on the mass of the vehicle. The interplay of these forces determines the flight characteristics and overall performance of the aircraft.One of the key aspects of aeromechanics (空气动力学) is the study of airflow around objects. Engineers use computational fluid dynamics (CFD) simulations to visualize how air interacts with the surfaces of an aircraft. This allows them to identify areas of high drag or turbulence, which can be optimized to enhance performance. Wind tunnel testing is another vital tool in this field, where scaled models of aircraft are subjected to controlled airflow to gather data on aerodynamic properties.The principles of aeromechanics (空气动力学) are not only applicable to large commercial aircraft but also to smaller vehicles like drones and even sports cars. For instance, understanding how air flows over a drone's wings can help designers create more efficient and stable flying machines. Similarly, in the automotive industry, knowledge of aeromechanics (空气动力学) is used to reduce drag and improve fuel efficiency in vehicles.In recent years, advancements in technology have significantly impacted the field of aeromechanics (空气动力学). The development of more sophisticated materials and construction techniques has allowed for lighter and stronger aircraft. Additionally, the rise of electric and hybrid propulsion systems has introduced new challenges and opportunities within the realm of aeromechanics (空气动力学). Engineers must now consider factors such as battery weight and distribution, which affect the overall aerodynamics of the vehicle.As environmental concerns continue to grow, the importance of aeromechanics (空气动力学) in creating sustainable aviation solutions cannot be overstated. Researchers are actively exploring ways to reduce emissions and noise pollution associated with air travel. This includes the design of more efficient wing shapes, the use of renewable energy sources, and the development of quieter engines.In conclusion, aeromechanics (空气动力学) is an essential field that merges science and engineering to solve complex challenges related to flight. Its applications are vast, ranging from commercial aviation to personal drones and even automotive design. As technology progresses and the demand for efficient and sustainable transportation rises, the significance of aeromechanics (空气动力学) will only continue to grow, shaping the future of how we travel through the skies.
空气动力学是一个迷人的领域,它结合了流体动力学和固体力学的原理,以研究物体在空气中运动的行为。这个学科在各种空中交通工具的设计和分析中起着至关重要的作用,包括飞机、直升机和无人机。理解aeromechanics(空气动力学)对于那些旨在提高这些交通工具效率、安全性和性能的工程师和科学家来说是必不可少的。aeromechanics(空气动力学)的研究涉及对物体在大气中运动时所受力的检查。这些力包括升力、阻力、推力和重力。升力是使飞机能够飞向空中的力量,而阻力是飞机前进时遇到的阻力。由发动机产生的推力推动飞机,重力则是作用于飞机质量的引力。这些力的相互作用决定了飞机的飞行特性和整体性能。aeromechanics(空气动力学)的一个关键方面是研究物体周围的气流。工程师使用计算流体动力学(CFD)模拟来可视化空气如何与飞机的表面相互作用。这使他们能够识别高阻力或湍流区域,从而优化性能。风洞测试是这一领域的另一个重要工具,通过对缩小模型的飞机进行控制气流的实验,以收集关于空气动力特性的数据信息。aeromechanics(空气动力学)的原理不仅适用于大型商用飞机,也适用于无人机等较小的飞行器,甚至运动汽车。例如,了解空气如何在无人机的机翼上流动,可以帮助设计师创造出更高效、更稳定的飞行器。同样,在汽车工业中,了解aeromechanics(空气动力学)被用于减少阻力,提高车辆的燃油效率。近年来,技术的进步对aeromechanics(空气动力学)领域产生了显著影响。更复杂材料和建造技术的发展,使得飞机变得更轻、更强。此外,电动和混合动力推进系统的兴起,给aeromechanics(空气动力学)带来了新的挑战和机遇。工程师们现在必须考虑电池的重量和分布,这会影响飞机的整体空气动力学。随着环境问题的日益严重,aeromechanics(空气动力学)在创建可持续航空解决方案中的重要性不容忽视。研究人员正在积极探索减少航空旅行相关排放和噪音污染的方法。这包括设计更高效的机翼形状、使用可再生能源以及开发更安静的发动机。总之,aeromechanics(空气动力学)是一个将科学与工程结合在一起的重要领域,旨在解决与飞行相关的复杂挑战。它的应用范围广泛,从商业航空到个人无人机,甚至汽车设计。随着技术的进步和对高效、可持续交通需求的增加,aeromechanics(空气动力学)的重要性只会继续增长,塑造我们如何在天空中旅行的未来。