chemosynthesis

简明释义

[ˌkeməʊˈsɪnθəsɪs][ˌkemoʊˈsɪnθəsɪs]

n. [化学] 化学合成

英英释义

Chemosynthesis is the process by which certain organisms, such as bacteria, convert inorganic compounds into organic matter using chemical energy, typically derived from reactions involving sulfur or methane.

化学合成是某些生物(如细菌)通过利用化学能将无机化合物转化为有机物的过程,通常涉及硫或甲烷的反应。

单词用法

chemosynthesis of organic compounds

有机化合物的化学合成

chemosynthesis and photosynthesis

化学合成与光合作用

chemosynthesis by bacteria

细菌的化学合成

chemosynthesis in deep-sea ecosystems

深海生态系统中的化学合成

chemosynthesis pathway

化学合成途径

chemosynthesis reactions

化学合成反应

chemosynthesis-based organisms

以化学合成为基础的生物

chemosynthesis-driven processes

以化学合成为驱动的过程

同义词

chemotrophy

化能营养

Chemotrophy refers to organisms that obtain energy by oxidizing inorganic or organic substances.

化能营养指的是通过氧化无机或有机物质获得能量的生物。

chemoautotrophy

化能自养

Chemoautotrophy is a type of chemosynthesis where organisms use chemicals as a source of energy to produce their own food.

化能自养是一种化学合成,其中生物利用化学物质作为能量来源来生产自己的食物。

反义词

photosynthesis

光合作用

Plants use photosynthesis to convert sunlight into energy.

植物利用光合作用将阳光转化为能量。

aerobic respiration

有氧呼吸

Aerobic respiration requires oxygen to produce energy.

有氧呼吸需要氧气来产生能量。

例句

1.Bachelor degree or above, major in organic chemistry, chemosynthesis, chemical Engineering, fine chemical, etc.

大学本科或以上学历;2。有机化学、化学合成、化学工程、精细化工等相关专业。

2.To use nitrate as electron donor in the electron transport chain during chemosynthesis.

利用硝酸盐作为化学合成作用中,电子传递链之电子提供者。

3.Chemosynthesis of polypeptide and protein is that many amino acids are linked by peptide links to form a polypeptide chain under the given conditions.

多肽和蛋白质的人工合成,就是多个氨基酸在一定的条件下通过肽键形成多肽链。

4.To be confronted with restricting chemosynthesis pesticides used in organic orchards, insect pest control had become a bottleneck.

面临有机果园不准使用化学合成农药的限制,果树害虫防治成为瓶颈问题。

5.The bacteria, well the bacteria kind of feed the tubeworms through chemosynthesis, remember, that chemical reaction I described earlier.

而细菌呢,有点像通过化学合成的方式来为管虫提供食物,记得之前讲过的化学作用吧。

6.They live in an environment of chemosynthesis.

它们生活在一个化学合 成的环境之中。

7.This suggests that bacterial chemosynthesis is not a sufficient source of nutrition for these creatures.

这表明细菌的化学合成并不是这些生物的充足营养来源。

8.Chiral amino acids are elements of semi-synthetic antibiotics, new herbicide, insecticide and bio-active peptides in chemosynthesis. They will have wider application prospects.

手性氨基酸可作为半合成抗生素、新除草剂、杀虫剂以及生理活性多肽化学合成的手性模块,具有广泛的应用前景。

9.As an important industrial material, the paranitrophenol is widely used in dyestuff, medicine and chemosynthesis plant.

对硝基酚是一种重要的化工原料,广泛应用于染料、药物制造及化学品合成等行业。

10.The bacteria in the deep sea rely on chemosynthesis 化学合成 to produce energy from hydrogen sulfide.

深海中的细菌依赖于chemosynthesis 化学合成从硫化氢中产生能量。

11.Researchers are studying chemosynthesis 化学合成 to understand how life can exist without sunlight.

研究人员正在研究chemosynthesis 化学合成以了解生命如何在没有阳光的情况下存在。

12.The study of chemosynthesis 化学合成 helps scientists discover new forms of life.

chemosynthesis 化学合成的研究帮助科学家发现新的生命形式。

13.Some deep-sea vents are hotspots for chemosynthesis 化学合成, supporting unique ecosystems.

一些深海热泉是chemosynthesis 化学合成的热点,支持独特的生态系统。

14.In extreme environments, organisms often use chemosynthesis 化学合成 instead of photosynthesis.

在极端环境中,生物通常使用chemosynthesis 化学合成而不是光合作用。

作文

In the vast realm of biology, the processes that sustain life are incredibly diverse and fascinating. One such process is chemosynthesis, which is a method by which certain organisms convert inorganic compounds into organic matter using chemical energy. Unlike photosynthesis, which relies on sunlight to drive the conversion of carbon dioxide and water into glucose and oxygen, chemosynthesis takes place in environments devoid of light, such as deep-sea hydrothermal vents or within the guts of certain animals. This remarkable ability highlights the adaptability of life in extreme conditions and underscores the complexity of ecological systems.Chemosynthesis is primarily performed by bacteria and archaea, which are microorganisms capable of surviving in some of the harshest environments on Earth. These organisms utilize various chemical reactions to obtain energy. For instance, some chemosynthetic bacteria oxidize hydrogen sulfide, a toxic compound found in the vicinity of hydrothermal vents, to produce energy. This energy is then used to convert carbon dioxide into carbohydrates, forming the basis of the food web in these unique ecosystems.The significance of chemosynthesis extends beyond just the survival of individual species; it plays a crucial role in supporting entire communities. In the dark depths of the ocean, where sunlight cannot penetrate, chemosynthetic organisms serve as primary producers, analogous to plants in terrestrial ecosystems. They form the foundation for a rich tapestry of life, supporting a variety of organisms, including tube worms, clams, and various types of fish, all of which rely on the organic matter produced by chemosynthetic bacteria.Moreover, chemosynthesis has implications for our understanding of the origins of life on Earth. Some scientists hypothesize that early life forms may have relied on chemosynthesis before the advent of photosynthesis. This theory suggests that life could have emerged in environments rich in minerals and chemicals, where energy was derived from chemical reactions rather than sunlight. Thus, studying chemosynthesis not only provides insights into current ecosystems but also helps unravel the mysteries of how life began on our planet.In conclusion, chemosynthesis is a vital biological process that showcases the incredible adaptability of life. It allows organisms to thrive in extreme environments where sunlight is absent, and it supports complex ecosystems that depend on these unique producers. As we continue to explore the depths of our oceans and other extreme environments, the study of chemosynthesis will likely reveal even more about the resilience of life and its capacity to flourish under a variety of conditions. Understanding this process enriches our knowledge of biology and emphasizes the interconnectedness of all living organisms, regardless of their environment.

在生物学的广阔领域中,维持生命的过程是极其多样和迷人的。其中一个过程是化学合成,这是某些生物利用化学能将无机化合物转化为有机物的方法。与依赖阳光驱动二氧化碳和水转化为葡萄糖和氧气的光合作用不同,化学合成发生在没有光的环境中,例如深海热液喷口或某些动物的肠道内。这种非凡的能力突显了生命在极端条件下的适应性,并强调了生态系统的复杂性。化学合成主要由细菌和古菌执行,这些微生物能够在地球上一些最恶劣的环境中生存。这些生物利用各种化学反应来获取能量。例如,一些化学合成细菌氧化硫化氢,这是一种在热液喷口附近发现的有毒化合物,以产生能量。这种能量随后用于将二氧化碳转化为碳水化合物,形成这些独特生态系统食物链的基础。化学合成的重要性不仅仅体现在个别物种的生存上;它在支持整个群落方面也发挥着至关重要的作用。在阳光无法穿透的深海中,化学合成生物作为初级生产者,类似于陆地生态系统中的植物。它们形成了丰富生命的基础,支持包括管虫、蛤蜊和各种鱼类在内的多种生物,这些生物都依赖于化学合成细菌所产生的有机物。此外,化学合成对我们理解地球生命起源的影响。科学家们猜测,早期生命形式可能在光合作用出现之前依赖于化学合成。这一理论表明,生命可能在富含矿物质和化学物质的环境中出现,能量来源于化学反应而非阳光。因此,研究化学合成不仅提供了对当前生态系统的洞察,还帮助揭开了生命如何在我们星球上开始的奥秘。总之,化学合成是一个重要的生物过程,展示了生命的惊人适应性。它使生物能够在缺乏阳光的极端环境中生存,并支持依赖这些独特生产者的复杂生态系统。随着我们继续探索海洋深处和其他极端环境,化学合成的研究可能会进一步揭示生命的韧性及其在各种条件下蓬勃发展的能力。理解这一过程丰富了我们对生物学的认识,并强调了所有生物体之间的相互联系,无论它们的环境如何。