multipole
简明释义
n. 多极;复极
adj. 多极的
英英释义
单词用法
多极展开 | |
多极矩 | |
多极场 | |
高阶多极 | |
电多极 | |
磁多极 |
同义词
多极 | 多极展开在静电学中使用。 | ||
多极 | In physics, a multi-pole approximation simplifies complex field calculations. | 在物理学中,多极近似简化了复杂的场计算。 |
反义词
偶极 | A dipole consists of two equal and opposite charges separated by a distance. | 偶极由两个相等且相反的电荷在一定距离内分开组成。 | |
单极 | A monopole is a theoretical particle that has only one magnetic pole. | 单极是一种理论粒子,只有一个磁极。 |
例句
1.Electric multipole moment method is a simple and applied method of solving problems in electrostatic field.
法是处理静电场问题的一种简单而实用的方法。
2.It USES the fast multipole method (FMM) to accelerate the solution of the integral equations.
它使用快速多极方法(FMM)加速积分方程的解决方案。
3.Fast multipole method is used as a fast solver for BEM, making BEM applicable for large scale simulation of composites with a large number of randomly distributed particles.
快速多极算法作为边界元法的求解算法,从而使边界元法能够对含有大量随机分布颗粒的复合材料进行大规模模拟。
4.For 3d elasticity problems, the parallel computations based on the fast multipole and the conventional boundary element method (BEM) on PC cluster are compared.
以三维弹性力学问题为例,对快速多极与常规边界元法机群并行计算进行了比较。
5.MAC - multipole sub - array acoustic log is an advanced logging technology.
多极子阵列声波技术是目前较先进的测井技术。
6.VCVS active filters are greatly used in front signal acquisition and processing unit of the Cross Multipole Array Acousticlog tool.
正交偶极子阵列声波测井仪中前端信号采集和处理单元大量使用了VCVS有源滤波器。
7.Multilevel fast multipole method is used to fast calculate the matrix-vector product when we solve the linear system by iterative method.
分层快速多极算法被用来加速用迭代法求解线性方程组时的矩阵向量乘积的运算。
8.The fast multipole method is applied for calculating the radar cross section of a groove in a perfectly conducting plane.
采用快速多极子方法计算无限大导体平面上凹槽的雷达散射截面。
9.Only magnetic dipole and higher multipole configuratons occur in nature.
自然界中只能出现磁偶极子以及磁多极子的形式。
10.The design of antennas often involves multipole 多极子 configurations to achieve desired radiation patterns.
天线的设计通常涉及多极子配置,以实现所需的辐射模式。
11.In electromagnetic theory, a multipole 多极子 expansion is used to describe the potential fields generated by charge distributions.
在电磁理论中,多极子展开用于描述由电荷分布产生的势场。
12.The multipole 多极子 approximation simplifies complex interactions in quantum mechanics.
在量子力学中,多极子近似简化了复杂的相互作用。
13.Researchers are studying the effects of multipole 多极子 moments on molecular interactions.
研究人员正在研究多极子矩对分子相互作用的影响。
14.In particle physics, multipole 多极子 expansions help in understanding the forces between particles.
在粒子物理学中,多极子展开有助于理解粒子之间的力。
作文
In the realm of physics and engineering, the concept of multipole (多极子) plays a crucial role in understanding complex systems. A multipole refers to a distribution of charges or magnetic moments that can be characterized by multiple poles, as opposed to a simple dipole which has only two poles. This concept is essential in various fields such as electromagnetism, quantum mechanics, and even in acoustics.The significance of multipole expansions lies in their ability to simplify the analysis of complex fields. For instance, when dealing with the electric field generated by a group of charges, it is often impractical to calculate the field directly from each charge's contribution. Instead, physicists use multipole expansions to approximate the field by considering contributions from different orders of poles: monopoles, dipoles, quadrupoles, and so forth. Each term in this expansion represents a different level of complexity and contributes to a more accurate representation of the field at a distance.In practical applications, multipole moments are used to describe the behavior of molecules in external fields. For example, in molecular chemistry, the dipole moment of a molecule indicates how the electron cloud is distributed, providing insights into its reactivity and interaction with other molecules. Higher-order multipole moments, such as quadrupole and octupole moments, can further refine our understanding of molecular interactions, particularly in polar solvents or under strong electromagnetic fields.Moreover, multipole methods are employed in computational simulations to model physical systems efficiently. In computational electromagnetics, for instance, the multipole technique allows for faster calculations of forces and potentials in systems with many interacting particles. By truncating the multipole expansion after a certain order, researchers can achieve a balance between computational efficiency and accuracy, which is vital in simulations of large-scale systems like biological molecules or nanostructures.In astrophysics, multipole moments are used to analyze the gravitational fields of celestial bodies. The mass distribution within a planet or star can be approximated using multipole expansions, allowing scientists to infer properties such as density variations and internal structure. This information is crucial for understanding planetary formation, tectonic activity, and even the dynamics of galaxies.Despite its widespread applications, the concept of multipole can be challenging to grasp due to its mathematical nature. However, with a solid foundation in vector calculus and an understanding of field theory, one can appreciate the elegance and utility of multipole expansions. They provide a powerful framework for simplifying complex interactions into manageable components, making them indispensable tools in both theoretical and applied physics.In conclusion, the study of multipole (多极子) representations enriches our understanding of physical phenomena across various disciplines. Whether in the design of new materials, the exploration of molecular interactions, or the investigation of cosmic structures, multipole concepts help bridge the gap between simplistic models and the intricate realities of nature. As technology advances and our scientific inquiries become more sophisticated, the relevance of multipole analyses will undoubtedly continue to grow, paving the way for new discoveries and innovations.
在物理和工程领域,multipole(多极子)这一概念在理解复杂系统方面发挥着至关重要的作用。multipole是指一种电荷或磁矩的分布,可以通过多个极点来表征,而不是只有两个极点的简单偶极子。这个概念在电磁学、量子力学甚至声学等多个领域中都是必不可少的。multipole 展开式的重要性在于它能够简化复杂场的分析。例如,在处理一组电荷产生的电场时,直接从每个电荷的贡献计算电场往往是不切实际的。相反,物理学家使用 multipole 展开式,通过考虑不同极点阶数的贡献来近似电场:单极子、偶极子、四极子等等。这个展开式中的每一项代表了不同的复杂程度,并且对远处场的更准确表征做出了贡献。在实际应用中,multipole 矩用于描述分子在外部场中的行为。例如,在分子化学中,分子的偶极矩指示电子云如何分布,从而提供了其反应性和与其他分子相互作用的见解。更高阶的 multipole 矩,如四极子和八极子矩,可以进一步细化我们对分子相互作用的理解,特别是在极性溶剂或强电磁场下。此外,multipole 方法被用于计算机模拟,以高效地建模物理系统。在计算电磁学中,例如,multipole 技术允许更快地计算许多相互作用粒子系统中的力和势。通过在某个阶数后截断 multipole 展开式,研究人员可以在计算效率和准确性之间取得平衡,这在大规模系统的模拟中至关重要,比如生物分子或纳米结构。在天体物理学中,multipole 矩用于分析天体的引力场。行星或恒星内部的质量分布可以通过 multipole 展开式进行近似,从而使科学家能够推断出密度变化和内部结构等特性。这些信息对于理解行星形成、构造活动甚至星系的动态至关重要。尽管应用广泛,但由于其数学性质,multipole 的概念可能难以掌握。然而,拥有扎实的向量微积分基础和对场论的理解,人们就能欣赏到 multipole 展开式的优雅与实用性。它们提供了一种强大的框架,将复杂的相互作用简化为可管理的组成部分,使其成为理论和应用物理中不可或缺的工具。总之,multipole(多极子)表示的研究丰富了我们对各个学科物理现象的理解。无论是在新材料的设计、分子相互作用的探索,还是在宇宙结构的调查中,multipole 概念帮助弥合了简单模型与自然复杂现实之间的差距。随着技术的进步和我们的科学探究变得更加复杂,multipole 分析的相关性无疑将继续增长,为新的发现和创新铺平道路。