hydromagnetic
简明释义
英[ˌhaɪdrəʊmæɡˈnetɪk]美[ˌhaɪdroʊmæɡˈnetɪk]
n. 磁流,磁流体
adj. 磁流的,磁流体的
英英释义
Relating to the study of the magnetic properties of electrically conducting fluids, particularly in the context of fluid dynamics and magnetohydrodynamics. | 与电导流体的磁性特性研究相关,特别是在流体动力学和磁流体力学的背景下。 |
单词用法
水磁理论 | |
水磁现象 | |
水磁发电机 | |
水磁不稳定性 |
同义词
磁流体动力学 | The study of magnetohydrodynamic flows is essential in astrophysics. | 磁流体动力学流动的研究在天体物理学中是至关重要的。 | |
水磁性 | Hydromagnetic effects are significant in the behavior of plasma. | 水磁性效应在等离子体的行为中是显著的。 |
反义词
例句
1.The characteristic of the emission caused in the special spiral magnetic field of hydromagnetic accretion disk is discussed mainly using the formula of curvature radiation.
并着重用曲率辐射公式讨论了在磁流体吸积盘的特殊螺旋强磁场中的辐射特点。
2.The characteristic of the emission caused in the special spiral magnetic field of hydromagnetic accretion disk is discussed mainly using the formula of curvature radiation.
并着重用曲率辐射公式讨论了在磁流体吸积盘的特殊螺旋强磁场中的辐射特点。
3.The theory is based on the complex hydromagnetic equations of nebula, which are simplified approximately to the equations of velocity.
把星云的复杂的磁流体动力学方程,近似简化为只与速度相关的方程,则得到一个可解的简单模型。
4.The hydromagnetic 水磁学 model helps predict the movement of charged particles in liquid metals.
该水磁学模型有助于预测带电粒子在液态金属中的运动。
5.The study of hydromagnetic 水磁学 effects is crucial in understanding the behavior of plasma in astrophysical contexts.
对水磁学效应的研究在理解天体物理环境中等离子体的行为方面至关重要。
6.In engineering, hydromagnetic 水磁学 principles are applied to design efficient propulsion systems for spacecraft.
在工程学中,水磁学原理被应用于设计高效的航天器推进系统。
7.Understanding hydromagnetic 水磁学 phenomena can enhance our ability to harness geothermal energy.
理解水磁学现象可以增强我们利用地热能的能力。
8.Researchers are exploring hydromagnetic 水磁学 waves as a means to control fluid dynamics in industrial processes.
研究人员正在探索水磁学波作为控制工业过程中的流体动力学的一种方法。
作文
The study of the interactions between fluid dynamics and magnetic fields is a fascinating area of research known as hydromagnetic phenomena. This field combines principles from both hydrodynamics and magnetism, leading to a deeper understanding of various natural processes. In essence, hydromagnetic refers to the behavior of electrically conducting fluids in the presence of magnetic fields, which can be observed in numerous applications ranging from astrophysics to engineering. One of the most captivating aspects of hydromagnetic studies is their relevance to astrophysical phenomena. For instance, the behavior of plasma in stars, including our sun, can be explained through hydromagnetic principles. The solar wind, which consists of charged particles emitted by the sun, interacts with the Earth's magnetic field, resulting in spectacular auroras and other space weather events. Understanding these interactions is crucial for predicting space weather that can impact satellite communications and power grids on Earth.In engineering, hydromagnetic principles are applied in various technologies, such as electromagnetic pumps and MHD generators. Electromagnetic pumps use magnetic fields to move conductive fluids without any moving parts, making them highly efficient and reliable for transporting molten metals or liquid metals in nuclear reactors. Similarly, MHD generators convert thermal energy directly into electrical energy using the motion of conductive fluids in a magnetic field. These technologies showcase the practical applications of hydromagnetic concepts in modern engineering and energy production.Moreover, the study of hydromagnetic flows is essential in understanding natural phenomena such as ocean currents and atmospheric circulation. The interaction of magnetic fields with ocean currents can influence climate patterns and marine ecosystems. Researchers are increasingly aware that the Earth's magnetic field plays a role in guiding ocean currents, which in turn affects global climate systems. By studying these hydromagnetic interactions, scientists can better predict climate changes and their impacts on biodiversity.Furthermore, the mathematical modeling of hydromagnetic flows presents unique challenges and opportunities. The governing equations, known as the Navier-Stokes equations coupled with Maxwell's equations, describe the motion of fluids and the behavior of electromagnetic fields simultaneously. Solving these equations requires advanced computational techniques and a deep understanding of both fluid mechanics and electromagnetism. As computational power continues to grow, researchers can simulate hydromagnetic phenomena with greater accuracy, leading to new insights and advancements in the field.In conclusion, hydromagnetic phenomena encompass a wide range of applications and implications across various scientific disciplines. From understanding the dynamics of celestial bodies to improving engineering technologies and predicting climate patterns, the study of hydromagnetic interactions is crucial for advancing our knowledge of the natural world. As research in this field continues to evolve, it holds the potential to unlock new solutions to some of the most pressing challenges facing humanity today, such as sustainable energy production and climate change mitigation.
流体动力学与磁场之间相互作用的研究是一个引人入胜的研究领域,称为水磁现象。这个领域结合了流体动力学和磁学的原理,深入理解各种自然过程。简而言之,水磁指的是在磁场存在下导电流体的行为,这在从天体物理到工程的众多应用中都可以观察到。
水磁研究中最吸引人的方面之一是其与天体物理现象的相关性。例如,恒星(包括我们的太阳)中等离子的行为可以通过水磁原理来解释。太阳风由太阳发出的带电粒子组成,与地球的磁场相互作用,导致壮观的极光和其他空间天气事件。理解这些相互作用对于预测可能影响卫星通信和地球电网的空间天气至关重要。
在工程领域,水磁原理被应用于各种技术,例如电磁泵和MHD发电机。电磁泵利用磁场来移动导电流体,而无需任何移动部件,使它们在运输熔融金属或核反应堆中的液态金属时高度有效且可靠。同样,MHD发电机通过在磁场中运动的导电流体直接将热能转化为电能。这些技术展示了水磁概念在现代工程和能源生产中的实际应用。
此外,水磁流动的研究对于理解自然现象如海洋洋流和大气环流至关重要。磁场与海洋洋流的相互作用可以影响气候模式和海洋生态系统。研究人员越来越意识到,地球的磁场在引导海洋洋流方面发挥着作用,而海洋洋流又影响全球气候系统。通过研究这些水磁相互作用,科学家可以更好地预测气候变化及其对生物多样性的影响。
此外,水磁流动的数学建模呈现出独特的挑战和机遇。控制方程,即Navier-Stokes方程与Maxwell方程的耦合,描述了流体的运动和电磁场的行为。求解这些方程需要先进的计算技术以及对流体力学和电磁学的深入理解。随着计算能力的不断提高,研究人员可以更准确地模拟水磁现象,从而获得新的见解和进展。
总之,水磁现象涵盖了各个科学学科中广泛的应用和影响。从理解天体的动力学到改善工程技术和预测气候模式,水磁相互作用的研究对于推进我们对自然世界的认识至关重要。随着这一领域的研究不断发展,它有潜力为解决人类面临的一些最紧迫的挑战提供新方案,例如可持续能源生产和气候变化缓解。