lemma
简明释义
n. 引理;辅助定理;论点;膜
n. (Lemma)人名;(俄)莱玛;(意、埃塞)莱马
复 数 l e m m a s 或 l e m m a t a
英英释义
单词用法
定理的引理 | |
基本引理 | |
语义引理 | |
证明一个引理 | |
陈述一个引理 | |
应用一个引理 |
同义词
反义词
定理 | 这位数学家证明的定理具有开创性。 | ||
推论 | From this theorem, we can derive several important corollaries. | 从这个定理中,我们可以推导出几个重要的推论。 |
例句
1.The palea and lemma were transformed into leaf-like structures;
浆片转变为稃片类的结构;
2.Using forking lemma to prove signature scheme is an important method to prove the security of signature schemes.
利用分叉引理对签名体制进行证明,是进行签名体制安全性证明的一种重要方法。
3.Correspondingly, for a keyword search, the lemmas of the search term are identified, and all documents containing that lemma are returned. For example.
相对应地,在一个关键字搜索中,首先确认搜索词汇的词元,然后所有包含这个词元的文档都会被返回。
4.It is very important to prove a lemma for the proof of the independence between two quadratic forms of multivariate normal variables.
对于多元正态随机变量二次型的独立性的证明,最重要的是证明一个引理。
5.For example, good is a lemma for good and better, so the keyword search returns documents containing either of these terms.
例如,good是good和better的词元,所以关键字搜索会返回包含任意一个词汇的文档。
6.Hereditary features of two mutant traits were analyzed for albino lemma and violet auricle of flag leaf in barley mutant 2 98113 induced by radiation.
对大麦突变品系2 98113的白化颖壳和旗叶紫耳2个色变性状的遗传规律进行了研究。
7.Then that reader can skip the proof of Lemma 15 'completely, and not have to deal with B at all.
这样读者就可以完整地跳过引理15',完全不必关心B了。
8.In linguistics, a lemma refers to the base form of a word, such as 'run' for 'running'.
在语言学中,lemma 指的是一个词的基本形式,例如 'run' 是 'running' 的基本形式。
9.In mathematics, a lemma is a proven statement used as a stepping stone to prove further statements.
在数学中,lemma 是一个已证明的陈述,用作证明进一步陈述的基础。
10.The dictionary entry lists the lemma along with its definitions and usage.
字典条目列出了 lemma 及其定义和用法。
11.In logic, a lemma can be an intermediate proposition that helps in deriving a conclusion.
在逻辑中,lemma 可以是一个中间命题,有助于推导出结论。
12.The researcher cited a lemma from a previous study to support her argument.
研究者引用了一项先前研究中的 lemma 来支持她的论点。
作文
In the realm of linguistics and mathematics, the term lemma (引理) plays a crucial role in understanding the structure and function of language, as well as in proving mathematical theorems. A lemma is essentially a proposition or statement that is proven for the purpose of aiding in the proof of a larger theorem. This concept can be seen in various fields, including logic, philosophy, and even computer science. For instance, in linguistics, a lemma refers to the base form of a word, which is used to represent all its inflected forms. For example, the lemma (引理) 'run' encompasses all variations such as 'runs', 'running', and 'ran'. Understanding lemmas is essential for language processing tasks, as they help in simplifying the complexity of language by reducing words to their root forms. This simplification is particularly useful in computational linguistics and natural language processing, where algorithms need to analyze vast amounts of text data efficiently.Similarly, in mathematics, a lemma serves as a stepping stone in the process of proving more complex theorems. Take, for example, the famous Pythagorean theorem; before one can prove this theorem, several lemmas must first be established. These preliminary statements often hold significant value on their own and contribute to the overall understanding of the mathematical landscape. The importance of lemmas extends beyond academia; they are utilized in everyday problem-solving scenarios. When faced with a complex problem, breaking it down into smaller, manageable parts can often lead to a solution. Each part can be viewed as a lemma (引理) that helps in constructing the final answer. For instance, when writing an essay, one might start with an outline—each point in the outline serves as a lemma that supports the main argument of the essay.Moreover, the application of lemmas is not limited to just academic contexts. In the field of artificial intelligence, understanding the base forms of words allows machines to communicate more effectively with humans. By recognizing lemmas, AI systems can better understand the intent behind user queries, leading to more accurate responses and interactions. This technology has transformed industries such as customer service, where chatbots rely on the identification of lemmas to provide relevant information to users.In conclusion, the concept of lemma (引理) is pivotal across various disciplines, serving as a fundamental building block in both language and mathematics. Whether in the context of simplifying linguistic forms or aiding in complex mathematical proofs, lemmas enhance our understanding and efficiency in problem-solving. As we continue to explore the intricacies of language and mathematics, the significance of lemmas will undoubtedly persist, guiding us toward clearer communication and deeper insights.
在语言学和数学领域,术语lemma(引理)在理解语言的结构和功能以及证明数学定理方面发挥着至关重要的作用。lemma本质上是一个命题或陈述,其被证明是为了帮助证明更大定理的目的。这个概念可以在逻辑、哲学甚至计算机科学等各个领域中看到。例如,在语言学中,lemma指的是一个单词的基本形式,它用于表示所有的变形。例如,lemma(引理)“run”包含了所有的变化形式,如“runs”、“running”和“ran”。理解lemmas对于语言处理任务至关重要,因为它们通过将单词简化为其根形式来帮助简化语言的复杂性。这种简化在计算语言学和自然语言处理中特别有用,算法需要高效地分析大量文本数据。同样,在数学中,lemma作为证明更复杂定理的垫脚石。以著名的毕达哥拉斯定理为例;在证明该定理之前,必须先建立几个lemmas。这些初步陈述本身往往具有重要价值,并有助于整体理解数学领域。lemmas的重要性超越了学术界;它们被应用于日常问题解决场景中。当面临复杂问题时,将其分解为更小、更易管理的部分通常可以导致解决方案。每个部分可以视为一个lemma(引理),帮助构建最终答案。例如,在写作一篇论文时,人们可能会先制定大纲——大纲中的每个要点都作为一个lemma来支持论文的主要论点。此外,lemmas的应用不仅限于学术背景。在人工智能领域,理解单词的基本形式使机器能够更有效地与人类交流。通过识别lemmas,人工智能系统能够更好地理解用户查询背后的意图,从而导致更准确的响应和互动。这项技术已改变了客户服务等行业,聊天机器人依赖于识别lemmas来向用户提供相关信息。总之,lemma(引理)的概念在各个学科中都是关键的,作为语言和数学中的基本构建块。无论是在简化语言形式的背景下,还是在帮助复杂数学证明的过程中,lemmas增强了我们在问题解决中的理解和效率。随着我们继续探索语言和数学的复杂性,lemmas的重要性无疑会持续存在,引导我们走向更清晰的沟通和更深刻的洞察。