pyroelectrics

简明释义

[ˌpaɪrəʊɪˈlɛktrɪks][ˌpaɪroʊɪˈlɛktrɪks]

n. 热电辐射计;热电体

英英释义

Pyroelectrics are materials that exhibit a temporary voltage when they are heated or cooled, due to changes in temperature.

热电材料是指在加热或冷却时因温度变化而产生暂时电压的材料。

单词用法

pyroelectric effect

热电效应

同义词

thermoelectrics

热电材料

Thermoelectrics convert temperature differences into electric voltage.

热电材料将温度差转化为电压。

ferroelectrics

铁电材料

Ferroelectrics are used in capacitors and memory devices.

铁电材料用于电容器和存储设备。

反义词

thermoelectrics

热电材料

Thermoelectrics can convert temperature differences directly into electric voltage.

热电材料可以将温差直接转化为电压。

adiabatic materials

绝热材料

Adiabatic materials are used in applications where heat transfer is minimized.

绝热材料用于需要最小化热传递的应用中。

例句

1.The efficiency of pyroelectrics 热电材料 can be significantly affected by their crystal structure.

pyroelectrics 热电材料 的效率可能会受到其晶体结构的显著影响。

2.Many modern devices utilize pyroelectrics 热电材料 for motion detection systems.

许多现代设备利用pyroelectrics 热电材料 用于运动检测系统。

3.The research team is exploring new materials for pyroelectrics 热电材料 that can improve energy conversion efficiency.

研究小组正在探索新的pyroelectrics 热电材料,以提高能量转换效率。

4.In the field of sensors, pyroelectrics 热电材料 are widely used to detect temperature changes.

在传感器领域,pyroelectrics 热电材料 被广泛用于检测温度变化。

5.The development of pyroelectrics 热电材料 has led to advancements in infrared imaging technology.

pyroelectrics 热电材料 的开发促进了红外成像技术的进步。

作文

In the world of materials science, one fascinating category of materials is known as pyroelectrics. These substances possess the unique ability to generate an electric charge in response to changes in temperature. This intriguing property makes pyroelectrics particularly valuable in various applications, ranging from sensors to energy harvesting devices. The fundamental principle behind pyroelectrics lies in their crystalline structure, which undergoes a change in polarization when subjected to thermal variations. As the temperature fluctuates, the alignment of electric dipoles within the material shifts, resulting in the generation of an electric field. This phenomenon can be harnessed for practical uses, such as in infrared sensors that detect heat emitted by objects, making pyroelectrics essential in security systems and thermal imaging technologies.Moreover, the versatility of pyroelectrics extends beyond sensing applications. Researchers are exploring the potential of these materials in energy harvesting, where they can convert waste heat into usable electrical energy. For instance, integrating pyroelectrics into wearable technology could enable devices to capture body heat and convert it into power for small electronics, paving the way for self-sustaining gadgets. The ongoing research in this field highlights the significance of pyroelectrics in addressing energy efficiency and sustainability challenges.One of the most commonly used pyroelectrics is lithium tantalate (LiTaO3), which exhibits excellent pyroelectric properties and is widely utilized in infrared detectors. Other materials, such as polyvinylidene fluoride (PVDF) and barium titanate (BaTiO3), also demonstrate notable pyroelectric effects. Each of these materials has its own advantages and limitations, making it crucial for scientists and engineers to select the appropriate pyroelectrics for specific applications.Despite their remarkable capabilities, the practical implementation of pyroelectrics is not without challenges. One significant issue is the temperature stability of these materials. Extreme temperatures can lead to degradation of their pyroelectric properties, necessitating the development of more robust materials that can withstand varying environmental conditions. Additionally, the efficiency of converting thermal energy into electrical energy remains an area of active research, with scientists striving to improve the performance of pyroelectrics for real-world applications.In conclusion, pyroelectrics represent a captivating area of study within materials science, offering promising solutions for energy harvesting and sensing technologies. Their ability to generate electricity from temperature changes opens up new avenues for innovation in various fields. As research advances and new materials are developed, the potential applications of pyroelectrics will undoubtedly expand, contributing to a more sustainable and technologically advanced future. Understanding the principles and applications of pyroelectrics is essential for anyone interested in the intersection of science and technology, as these materials play a crucial role in shaping the future of energy-efficient devices and systems.

在材料科学的世界中,有一类引人入胜的材料被称为热电材料。这些物质具有独特的能力,能够在温度变化时产生电荷。这一令人着迷的特性使得热电材料在各种应用中变得特别有价值,从传感器到能量收集设备。热电材料的基本原理在于它们的晶体结构,当受到热变化时会发生极化变化。随着温度的波动,材料内部电偶极子的排列发生变化,导致电场的产生。这一现象可以被用于实际用途,例如在检测物体发出的热量的红外传感器中,使得热电材料在安全系统和热成像技术中至关重要。此外,热电材料的多功能性超越了传感应用。研究人员正在探索这些材料在能量收集中的潜力,它们可以将废热转化为可用的电能。例如,将热电材料整合到可穿戴技术中,可以使设备捕获体热并将其转化为小型电子设备的电力,为自给自足的小工具铺平道路。该领域的持续研究凸显了热电材料在解决能源效率和可持续性挑战方面的重要性。最常用的热电材料之一是铌酸锂(LiTaO3),它表现出优良的热电特性,被广泛用于红外探测器。其他材料,如聚偏二氟乙烯(PVDF)和钛酸钡(BaTiO3),也展示了显著的热电效应。每种材料都有其自身的优缺点,因此科学家和工程师必须为特定应用选择合适的热电材料。尽管具备显著的能力,热电材料的实际应用并非没有挑战。一个重要问题是这些材料的温度稳定性。极端温度可能导致其热电特性的退化,因此需要开发更稳健的材料,以承受不同的环境条件。此外,将热能转化为电能的效率仍然是积极研究的领域,科学家们努力提高热电材料在实际应用中的性能。总之,热电材料代表了材料科学中一个迷人的研究领域,为能量收集和传感技术提供了有前景的解决方案。它们从温度变化中产生电力的能力为各个领域的创新开辟了新的途径。随着研究的进展和新材料的开发,热电材料的潜在应用无疑将扩展,为更加可持续和技术先进的未来做出贡献。理解热电材料的原理和应用对于任何对科学和技术交集感兴趣的人来说都是至关重要的,因为这些材料在塑造节能设备和系统的未来中发挥着关键作用。