spinor

简明释义

[ˈspɪnɜː][ˈspɪnər]

n. 自旋量

英英释义

A spinor is a mathematical object used in quantum mechanics and the theory of relativity, which represents the state of a particle with spin.

自旋子是一个数学对象,用于量子力学和相对论,表示具有自旋的粒子的状态。

Spinors are essential in the description of fermions and are utilized in various fields of theoretical physics.

自旋子在费米子的描述中至关重要,并在理论物理的多个领域中得到应用。

单词用法

dirac spinor

狄拉克旋量

majorana spinor

马约拉纳旋量

spinor field

旋量场

transform a spinor

变换一个旋量

construct a spinor

构造一个旋量

spinor algebra

旋量代数

同义词

spinor

自旋量子

In quantum mechanics, a spinor is used to describe the state of a particle with spin.

在量子力学中,自旋量子用于描述具有自旋的粒子的状态。

spin state

自旋态

The concept of spin states is essential in understanding the behavior of fermions.

自旋态的概念对于理解费米子的行为至关重要。

反义词

vector

向量

The velocity of an object is a vector quantity.

物体的速度是一个向量量。

scalar

标量

Temperature is a scalar quantity, not dependent on direction.

温度是一个标量量,不依赖于方向。

例句

1.It is justified that the integral of the gauge potential along path of not only electron but also scalar particle or spinor particle will contribute a geometric phase factor.

证明了规范场不仅沿入射电子在复连通区域运动路径的积分,而且还可沿入射标量或其他旋量粒子之一在复连通区域的运动路径积分,各自都将贡献一几何相因子。

2.In this paper, we discuss the wormhole model with the spinor field and deduce corresponding wormhole equation, and obtain a exact solution of this equation.

本文探讨具有旋量场的虫洞模型,导出了相应的虫洞方程和给出该方程的一个严格解。

3.It is justified that the integral of the gauge potential along path of not only electron but also scalar particle or spinor particle will contribute a geometric phase factor.

证明了规范场不仅沿入射电子在复连通区域运动路径的积分,而且还可沿入射标量或其他旋量粒子之一在复连通区域的运动路径积分,各自都将贡献一几何相因子。

4.The article infers two spinor formula of charge. It shows the essence of charge.

本文导出了电荷的二旋量公式,说明了电荷的本质。

5.The spinor and momentum structures of the structure wave functions are completely determined by the theory.

介子结构波函数的旋量结构和动量结构都是完全确定的。

6.The mathematical properties of a spinor 自旋子 are crucial for understanding fermions.

一个 spinor 自旋子 的数学性质对于理解费米子至关重要。

7.Physicists use spinors 自旋子 to describe the behavior of particles in magnetic fields.

物理学家使用 spinors 自旋子 来描述粒子在磁场中的行为。

8.In relativity, spinors 自旋子 can represent particles with half-integer spin.

在相对论中,spinors 自旋子 可以表示具有半整数自旋的粒子。

9.In quantum mechanics, a spinor 自旋子 is used to describe the state of particles like electrons.

在量子力学中,spinor 自旋子 用于描述像电子这样的粒子的状态。

10.The Dirac equation incorporates spinors 自旋子 to account for particle-antiparticle pairs.

狄拉克方程包含 spinors 自旋子 以考虑粒子-反粒子对。

作文

In the realm of theoretical physics and mathematics, the term spinor refers to a mathematical object that is essential in the study of quantum mechanics and the theory of relativity. A spinor is a type of vector that transforms in a specific way under rotations and Lorentz transformations. Unlike ordinary vectors, which can be described by three components in three-dimensional space, spinors typically have more complex properties and are often represented in higher-dimensional spaces. This complexity arises from their unique transformation rules, which make them particularly useful in the description of particles with spin, such as electrons.The concept of spinor is deeply intertwined with the notion of spin in quantum mechanics. Spin is an intrinsic form of angular momentum carried by particles, and it can take on half-integer values, which is where spinors come into play. For instance, electrons, which are fermions, possess a spin of 1/2. To accurately describe the quantum state of such particles, physicists employ spinors rather than traditional vectors. This allows for a more comprehensive understanding of their behavior under various physical processes.One of the most fascinating aspects of spinors is their relationship with symmetry. In mathematics, symmetry plays a crucial role in determining the properties of physical systems. The transformation properties of spinors under rotation highlight how they maintain certain characteristics even as the system changes. This invariance under transformation is a key principle in both physics and mathematics, leading to profound insights into the nature of reality. For example, the famous Dirac equation, which describes the behavior of fermions like electrons, fundamentally relies on the use of spinors. It elegantly combines quantum mechanics and special relativity, showcasing the power of spinors in bridging these two domains of physics.Despite their abstract nature, spinors have tangible implications in various fields. For example, in the realm of condensed matter physics, spinors are used to describe phenomena such as superconductivity and the quantum Hall effect. These applications demonstrate how the theoretical concepts of spinors can lead to practical advancements in technology and materials science.Moreover, the study of spinors has also influenced the development of modern technologies, including quantum computing. As researchers explore the potential of quantum bits or qubits, understanding the behavior of spinors becomes increasingly important. Qubits can exist in superpositions of states, and their manipulation often involves operations that can be better understood through the lens of spinors.In conclusion, the term spinor encapsulates a rich and intricate world of mathematical and physical concepts. From its fundamental role in quantum mechanics to its applications in cutting-edge technology, spinors are indispensable in advancing our understanding of the universe. As we continue to explore the depths of theoretical physics, the significance of spinors will undoubtedly grow, revealing new mysteries and possibilities in the fabric of reality. Understanding spinors not only enhances our grasp of particle physics but also opens up avenues for innovation and discovery in various scientific disciplines.

在理论物理和数学领域,术语spinor指的是一种数学对象,它在量子力学和相对论的研究中至关重要。spinor是一种向量,在旋转和洛伦兹变换下以特定方式变换。与普通向量不同,普通向量可以在三维空间中用三个分量描述,而spinor通常具有更复杂的性质,并且通常在更高维空间中表示。这种复杂性源于它们独特的变换规则,使它们在描述具有自旋的粒子(如电子)时尤其有用。spinor的概念与量子力学中的自旋观念密切相关。自旋是粒子携带的一种内在角动量,可以取半整数值,这就是spinor派上用场的地方。例如,电子是费米子,具有1/2的自旋。为了准确描述这些粒子的量子态,物理学家使用spinor而不是传统向量。这使得我们对它们在各种物理过程中行为的理解更加全面。spinor最迷人的方面之一是它们与对称性的关系。在数学中,对称性在决定物理系统的性质方面起着至关重要的作用。spinor在旋转下的变换特性突显了它们即使在系统变化时也能保持某些特征。这种变换下的不变性是物理学和数学中的一个关键原则,导致我们对现实本质的深刻见解。例如,著名的狄拉克方程描述了像电子这样的费米子的行为,根本上依赖于spinor的使用。它优雅地结合了量子力学和狭义相对论,展示了spinor在连接这两个物理领域中的力量。尽管spinor的性质抽象,但它们在各个领域都有切实的影响。例如,在凝聚态物理领域,spinor被用来描述超导现象和量子霍尔效应等现象。这些应用表明,spinor的理论概念可以推动技术和材料科学的实际进步。此外,spinor的研究还影响了现代技术的发展,包括量子计算。随着研究人员探索量子位或量子比特的潜力,理解spinor的行为变得越来越重要。量子比特可以存在于状态的叠加中,它们的操控通常涉及通过spinor的视角更好理解的操作。总之,术语spinor概括了丰富而复杂的数学和物理概念。从其在量子力学中的基础作用到在前沿技术中的应用,spinor在推动我们对宇宙的理解方面不可或缺。随着我们继续探索理论物理的深度,spinor的重要性无疑会增长,揭示现实结构中的新奥秘和可能性。理解spinor不仅增强了我们对粒子物理的把握,还为各个科学学科的创新和发现开辟了新的途径。