chemotropism
简明释义
英[kɪˈmɒtrəˌpɪzəm]美[kɪˈmɑtrəpɪzm]
n. [生物] 向药性;[生物] 向化性
英英释义
Chemotropism refers to the growth or movement of an organism in response to a chemical stimulus. | 化学趋性指的是生物体对化学刺激的生长或运动反应。 |
单词用法
正化学趋性 | |
负化学趋性 | |
化学趋向反应 | |
表现出化学趋性 | |
对化学信号的反应 | |
化学趋性的研究 |
同义词
化学反应 | Plants exhibit chemotropism by growing towards nutrients in the soil. | 植物通过向土壤中的营养物质生长来表现出化学反应。 | |
趋化性 | Bacterial chemotaxis allows them to move toward favorable environments. | 细菌的趋化性使它们能够朝向有利环境移动。 |
反义词
向光性 | Plants exhibit phototropism by growing towards light sources. | 植物通过向光性向光源生长。 | |
负向性 | 一些根部表现出负向性,向远离重力的方向生长。 |
例句
1.Chemotropism (chemotropic movement) A TROPISM in which the stimulus is chemical.
刺激物是化学物质的一种向性。
2.Hydrotropism (hydrotropic movement) a tropism in which the stimulus is water. It is a special kind of chemotropism.
向水性(向水运动):是由于水分刺激而产生的向性运动,属于向化性的一种特殊类型。
3.Hydrotropism (hydrotropic movement) a tropism in which the stimulus is water. It is a special kind of chemotropism.
向水性(向水运动):是由于水分刺激而产生的向性运动,属于向化性的一种特殊类型。
4.The chemotropism 化学趋性 of certain fungi allows them to find decaying organic matter.
某些真菌的chemotropism 化学趋性 使它们能够找到腐烂的有机物质。
5.Plants exhibit chemotropism 化学趋性 by growing towards nutrients in the soil.
植物通过向土壤中的养分生长来表现出chemotropism 化学趋性。
6.Understanding chemotropism 化学趋性 can improve agricultural practices by optimizing fertilizer application.
理解chemotropism 化学趋性 可以通过优化施肥方法来改善农业实践。
7.In laboratory studies, scientists observed chemotropism 化学趋性 in bacteria moving toward sugar.
在实验室研究中,科学家观察到细菌朝向糖移动的chemotropism 化学趋性。
8.The chemotropism 化学趋性 of roots helps them locate water sources.
根部的chemotropism 化学趋性 帮助它们找到水源。
作文
In the complex world of biology, various terms and concepts help us understand how living organisms interact with their environment. One such term is chemotropism, which refers to the movement or growth of an organism in response to a chemical stimulus. This phenomenon is particularly significant in plants, where roots and shoots exhibit directional growth based on the concentration of certain chemicals in their surroundings. For instance, when a plant root encounters higher concentrations of nutrients in the soil, it tends to grow towards that area, demonstrating positive chemotropism (化学趋性). Conversely, if there are harmful substances present, the plant may grow away from them, exhibiting negative chemotropism (化学趋性). Understanding chemotropism (化学趋性) is essential for comprehending how plants optimize their growth and survival. This adaptive behavior allows them to seek out vital resources like water and nutrients while avoiding toxic compounds. The mechanisms behind chemotropism (化学趋性) involve complex biochemical signaling pathways. When a plant detects a chemical gradient, specific receptors on its cells trigger a series of responses that lead to differential growth rates on either side of the plant. This results in bending or directional growth towards or away from the stimulus.Moreover, chemotropism (化学趋性) is not limited to plants. Certain microorganisms, such as bacteria, also exhibit this behavior. They can move towards nutrient-rich environments or away from harmful substances through a process known as chemotaxis, which is closely related to chemotropism (化学趋性). This ability to navigate their environment is crucial for their survival and reproduction.The study of chemotropism (化学趋性) has practical applications as well. In agriculture, understanding how crops respond to chemical signals can lead to more effective fertilization strategies and pest management techniques. By manipulating the chemical environment, farmers can encourage root growth in specific areas, enhancing nutrient uptake and improving crop yields.Furthermore, research into chemotropism (化学趋性) can provide insights into ecological interactions. For example, plants that rely on specific pollinators may emit certain chemicals to attract them, showcasing another layer of chemotropism (化学趋性) in nature. These interactions highlight the intricate relationships between different species and their environments.In conclusion, chemotropism (化学趋性) is a fascinating aspect of biological sciences that illustrates how organisms adapt to their surroundings. Whether in plants seeking nutrients or bacteria navigating their environment, the principles of chemotropism (化学趋性) reveal the underlying mechanisms that drive growth and survival. As we continue to explore this field, we gain valuable knowledge that can be applied to agriculture, ecology, and even medicine, paving the way for innovative solutions to some of the world's pressing challenges.
在生物学的复杂世界中,各种术语和概念帮助我们理解生物体如何与环境相互作用。其中一个术语是chemotropism,它指的是生物体对化学刺激的运动或生长。这种现象在植物中尤为重要,植物的根和芽根据周围某些化学物质的浓度表现出定向生长。例如,当植物根部遇到土壤中营养物质浓度较高的区域时,它往往会朝该区域生长,表现出正向chemotropism(化学趋性)。相反,如果存在有害物质,植物可能会远离它们,表现出负向chemotropism(化学趋性)。理解chemotropism(化学趋性)对于理解植物如何优化其生长和生存至关重要。这种适应性行为使它们能够寻找水和营养等重要资源,同时避免有毒化合物。chemotropism(化学趋性)背后的机制涉及复杂的生化信号传导途径。当植物检测到化学梯度时,细胞上的特定受体会触发一系列反应,导致植物两侧的生长速率不同,从而使植物弯曲或朝向刺激物定向生长。此外,chemotropism(化学趋性)并不限于植物。某些微生物,如细菌,也表现出这种行为。它们可以通过称为趋化性的过程朝向富含营养的环境移动,或远离有害物质,这与chemotropism(化学趋性)密切相关。这种导航能力对它们的生存和繁殖至关重要。对chemotropism(化学趋性)的研究也具有实际应用。在农业中,了解作物如何对化学信号做出反应可以导致更有效的施肥策略和害虫管理技术。通过操控化学环境,农民可以鼓励根部在特定区域生长,从而增强营养吸收,提高作物产量。此外,对chemotropism(化学趋性)的研究可以提供对生态相互作用的洞察。例如,依赖特定授粉者的植物可能会释放某些化学物质来吸引它们,展示了自然界中chemotropism(化学趋性)的另一层面。这些相互作用突显了不同物种及其环境之间错综复杂的关系。总之,chemotropism(化学趋性)是生物科学中一个迷人的方面,说明了生物体如何适应其环境。无论是在寻找营养的植物还是在其环境中导航的细菌,chemotropism(化学趋性)的原则揭示了驱动生长和生存的基本机制。随着我们继续探索这一领域,我们获得了可以应用于农业、生态甚至医学的宝贵知识,为解决世界上一些紧迫的挑战铺平了道路。