antimycin
简明释义
英[ˌæntɪˈmaɪsɪn]美[ænˈtaɪmaɪsɪn]
n. 抗霉素
英英释义
Antimycin is a type of antibiotic that inhibits the electron transport chain in mitochondria, specifically targeting complex III. | 抗霉素是一种抗生素,能够抑制线粒体中的电子传递链,特别是针对复合体III。 |
单词用法
抗霉素A | |
抗霉素B | |
用抗霉素处理 | |
被抗霉素抑制 |
同义词
反义词
刺激剂 | 咖啡因是咖啡中常见的刺激剂。 | ||
激活剂 | The enzyme acts as an activator in the biochemical reaction. | 这种酶在生化反应中起到激活剂的作用。 |
例句
1.Increased membrane fluidity resulted from the addition of antimycin A was also observed.
抗霉素A亦可使内膜的流动性增加。
2.Increased membrane fluidity resulted from the addition of antimycin A was also observed.
抗霉素A亦可使内膜的流动性增加。
3.This antimycin can increase the fluidity of the inner membrane.
此抗霉素可使内膜的流动性增加。
4.The researcher used antimycin to inhibit mitochondrial respiration in the experiment.
研究人员在实验中使用抗霉素来抑制线粒体呼吸。
5.By applying antimycin, scientists were able to observe changes in ATP production.
通过应用抗霉素,科学家能够观察到ATP生产的变化。
6.In studying cellular metabolism, antimycin serves as a crucial tool for understanding electron transport.
在研究细胞代谢时,抗霉素是理解电子传递的重要工具。
7.The effects of antimycin on yeast cells were documented in the latest microbiology journal.
关于抗霉素对酵母细胞影响的研究记录在最新的微生物学期刊中。
8.The inhibition of cytochrome c reductase by antimycin is well-established in biochemical studies.
抗霉素对细胞色素c还原酶的抑制在生化研究中已得到充分证明。
作文
Antimycin is a fascinating compound that has garnered significant attention in the field of biochemistry and pharmacology. It is known primarily for its role as an inhibitor of the electron transport chain in mitochondria, which is crucial for cellular respiration. The discovery of antimycin has provided scientists with valuable insights into the mechanisms of energy production within cells. By inhibiting the function of cytochrome bc1 complex, antimycin effectively disrupts the flow of electrons, leading to a decrease in ATP production. This characteristic makes antimycin an important tool for researchers studying mitochondrial function and dysfunction.The significance of antimycin extends beyond basic research; it also has potential therapeutic implications. For instance, understanding how antimycin affects cellular metabolism can help in the development of new treatments for diseases characterized by mitochondrial dysfunction, such as certain neurodegenerative disorders and cancer. In these conditions, the regulation of energy production is often altered, and compounds like antimycin can provide a means to explore these changes.Moreover, antimycin has been used in various experimental setups to study the effects of mitochondrial inhibitors on cellular processes. For example, researchers have investigated how antimycin influences apoptosis, or programmed cell death, by examining the cellular responses to energy depletion. The ability of antimycin to induce apoptosis in certain cell types has made it a valuable reagent in cancer research, where understanding the pathways leading to cell death is crucial for developing effective therapies.Another interesting aspect of antimycin is its environmental impact. As a naturally occurring compound produced by certain species of Streptomyces bacteria, it plays a role in the ecological dynamics of microbial communities. The production of antimycin can inhibit the growth of competing microorganisms, thereby influencing the composition of these communities. This ecological perspective highlights the dual nature of antimycin: while it serves as a powerful research tool in the laboratory, it also plays a role in the natural world.In conclusion, antimycin is more than just a simple chemical compound; it is a multifaceted tool that bridges the gap between fundamental research and practical applications. Its ability to inhibit mitochondrial function provides a unique window into the complexities of cellular energy metabolism, while its potential therapeutic applications make it a compound of interest in the medical field. Furthermore, its ecological role adds another layer of significance to this intriguing compound. As research continues to unveil the various roles of antimycin, it is clear that this compound will remain a topic of interest for scientists across multiple disciplines.
抗霉素是一种引人注目的化合物,在生物化学和药理学领域引起了广泛关注。它主要以抑制线粒体电子传递链的作用而闻名,这对于细胞呼吸至关重要。抗霉素的发现为科学家提供了关于细胞内能量产生机制的宝贵见解。通过抑制细胞色素bc1复合体的功能,抗霉素有效地破坏了电子流动,导致ATP生产减少。这一特性使得抗霉素成为研究线粒体功能和功能障碍的重要工具。抗霉素的意义不仅限于基础研究;它还具有潜在的治疗意义。例如,了解抗霉素如何影响细胞代谢可以帮助开发新的治疗方案,以应对某些特征为线粒体功能障碍的疾病,如某些神经退行性疾病和癌症。在这些情况下,能量生产的调节往往会发生变化,像抗霉素这样的化合物可以提供探索这些变化的方法。此外,抗霉素已被用于各种实验设置中,以研究线粒体抑制剂对细胞过程的影响。例如,研究人员调查了抗霉素如何影响凋亡或程序性细胞死亡,通过检查能量耗竭对细胞反应的影响。在某些细胞类型中,抗霉素诱导凋亡的能力使其成为癌症研究中的一种有价值的试剂,在那里理解导致细胞死亡的途径对开发有效疗法至关重要。抗霉素的另一个有趣的方面是它对环境的影响。作为某些链霉菌物种产生的天然化合物,它在微生物群落的生态动态中发挥着作用。抗霉素的产生可以抑制竞争微生物的生长,从而影响这些群落的组成。这种生态视角突显了抗霉素的双重性质:虽然它在实验室中作为一种强大的研究工具,但它也在自然界中发挥着作用。总之,抗霉素不仅仅是一个简单的化学化合物;它是一个多面手的工具,架起了基础研究与实际应用之间的桥梁。它抑制线粒体功能的能力提供了一个独特的窗口,让我们看到细胞能量代谢的复杂性,而它潜在的治疗应用使其成为医学领域的关注对象。此外,它的生态角色为这一引人入胜的化合物增加了另一层重要性。随着研究继续揭示抗霉素的各种作用,显然这一化合物将继续成为多个学科科学家的研究主题。