heteropolar

简明释义

[ˌhetərəʊˈpəʊlə(r)][ˌhetərəˈpoʊlər]

adj. 异极的

英英释义

Having opposite or different poles; relating to a system or structure that has distinct and contrasting elements.

具有相反或不同极性的;与具有明显对比元素的系统或结构相关。

单词用法

heteropolar interaction

异极相互作用

heteropolar compound

异极化合物

heteropolar electric field

异极电场

heteropolar system

异极系统

同义词

dipolar

双极的

Dipolar molecules have two poles, one positive and one negative.

双极分子有两个极,一个是正极,一个是负极。

polar

极性的

Polar solvents are often used in chemical reactions due to their ability to dissolve ionic compounds.

极性溶剂常用于化学反应,因为它们能够溶解离子化合物。

asymmetric

不对称的

Asymmetric structures can lead to unique properties in materials science.

不对称结构可以在材料科学中导致独特的性质。

反义词

homopolar

同极

Homopolar generators are known for their simplicity and efficiency in producing direct current.

同极发电机因其简单性和高效性而闻名于产生直流电。

isopolar

同电极

In homopolar systems, the magnetic poles are of the same type, leading to uniform field distribution.

在同极系统中,磁极类型相同,导致场分布均匀。

例句

1.The similarity of its heteropolar 3- or 6-aperturate pollen to the 3-aperturate pollen of Eudicots might result from convergent evolution.

其异极3沟或6沟型花粉与真双子叶植物的3沟花粉的相似是趋同演化的结果。

2.The similarity of its heteropolar 3- or 6-aperturate pollen to the 3-aperturate pollen of Eudicots might result from convergent evolution.

其异极3沟或6沟型花粉与真双子叶植物的3沟花粉的相似是趋同演化的结果。

3.The experiment demonstrated the properties of heteropolar 异极的 materials under different conditions.

实验展示了在不同条件下异极的材料的特性。

4.The battery consists of several heteropolar 异极的 cells that produce voltage.

电池由多个异极的单元组成,产生电压。

5.In physics, heteropolar 异极的 magnets have opposite poles.

在物理学中,异极的磁铁具有相反的极。

6.The design of the motor requires heteropolar 异极的 configurations for optimal performance.

电机的设计需要异极的配置以获得最佳性能。

7.Using heteropolar 异极的 electrodes can enhance the efficiency of electrochemical cells.

使用异极的电极可以提高电化学电池的效率。

作文

In the realm of science, particularly in physics and chemistry, the term heteropolar refers to a specific type of bond or interaction between atoms that possess different electronegativities. This concept is crucial for understanding how various molecules interact with one another and how these interactions influence the properties of substances. To grasp the significance of heteropolar bonds, it is essential to first understand the basic principles of electronegativity, which is the tendency of an atom to attract electrons towards itself. When two atoms with differing electronegativities form a bond, the result is a polar bond, characterized by an unequal sharing of electrons. This creates a dipole moment, where one end of the molecule becomes partially negative while the other end becomes partially positive. Such is the case with water (H2O), a quintessential example of a heteropolar molecule. The oxygen atom is more electronegative than the hydrogen atoms, leading to a polar covalent bond. This polarity is responsible for many of water's unique properties, such as its high boiling point and solvent capabilities.Understanding heteropolar interactions is not only important in theoretical chemistry but also has practical implications in various fields. For instance, in biochemistry, the heteropolar nature of certain molecules is vital for enzyme-substrate interactions. Enzymes often have regions that are heteropolar, allowing them to bind substrates effectively and catalyze biochemical reactions. This specificity is crucial for metabolic processes in living organisms.Moreover, the concept of heteropolar interactions extends beyond simple molecular bonding. In materials science, the understanding of heteropolar characteristics can help in designing new materials with desired properties. For example, semiconductors often rely on heteropolar bonds to facilitate the movement of electrons and holes, which is essential for the functioning of electronic devices.In the context of environmental science, heteropolar interactions play a significant role in the behavior of pollutants in water bodies. Understanding how heteropolar molecules interact with water can provide insights into the transport and degradation of contaminants, ultimately informing strategies for pollution management.In conclusion, the term heteropolar encapsulates a fundamental aspect of molecular chemistry that has far-reaching implications across various scientific disciplines. From the formation of water to the functioning of enzymes and the development of new materials, heteropolar interactions are integral to both the natural world and technological advancements. As we continue to explore the complexities of molecular interactions, the importance of understanding heteropolar bonds will undoubtedly become even more pronounced, paving the way for future innovations in science and technology.

在科学领域,特别是物理和化学中,术语heteropolar指的是原子之间具有不同电负性的特定类型的键或相互作用。这一概念对于理解各种分子如何相互作用以及这些相互作用如何影响物质的性质至关重要。要掌握heteropolar键的重要性,首先需要了解电负性的基本原理,即原子吸引电子的倾向。当两个具有不同电负性的原子形成键时,结果就是极性键,其特点是电子的不均匀共享。这会产生偶极矩,其中分子的一个端部分变得部分带负电,而另一个端部分则变得部分带正电。水(H2O)就是一个典型的heteropolar分子的例子。氧原子的电负性高于氢原子,导致形成极性共价键。这种极性是水许多独特性质的原因,例如其高沸点和溶剂能力。理解heteropolar相互作用不仅在理论化学中重要,还在各个领域具有实际意义。例如,在生物化学中,某些分子的heteropolar特性对酶-底物相互作用至关重要。酶通常具有heteropolar的区域,使其能够有效地结合底物并催化生化反应。这种特异性对于活生物体的代谢过程至关重要。此外,heteropolar的概念超越了简单的分子键合。在材料科学中,对heteropolar特性的理解可以帮助设计具有所需性质的新材料。例如,半导体通常依赖于heteropolar键来促进电子和空穴的运动,这对于电子设备的功能至关重要。在环境科学的背景下,heteropolar相互作用在污染物在水体中的行为中发挥着重要作用。理解heteropolar分子与水的相互作用可以提供关于污染物运输和降解的见解,最终为污染管理策略提供信息。总之,术语heteropolar概括了分子化学的一个基本方面,这在各个科学学科中具有深远的影响。从水的形成到酶的功能再到新材料的开发,heteropolar相互作用对于自然界和技术进步都是不可或缺的。随着我们继续探索分子相互作用的复杂性,理解heteropolar键的重要性无疑会变得更加明显,为未来的科学和技术创新铺平道路。