supramolecular

简明释义

[ˌs(j)uːprəməˈlekjʊlə][ˌsʊprəməˈlekjələr]

adj. 超分子的(由许多分子组成的)

英英释义

Relating to structures formed by the association of two or more molecules through non-covalent interactions.

与通过非共价相互作用形成的两个或多个分子的结构有关。

Pertaining to the study of complex molecular assemblies and interactions beyond the individual molecules.

涉及复杂分子组装和超越单个分子的相互作用的研究。

单词用法

supramolecular system

超分子系统

supramolecular networks

超分子网络

supramolecular materials

超分子材料

supramolecular devices

超分子设备

design of supramolecular architectures

超分子结构的设计

study of supramolecular phenomena

超分子现象的研究

applications of supramolecular chemistry

超分子化学的应用

characterization of supramolecular complexes

超分子复合物的表征

同义词

macromolecular

大分子的

Supramolecular chemistry studies the interactions between macromolecular structures.

超分子化学研究大分子结构之间的相互作用。

polymeric

聚合物的

Polymeric materials often exhibit supramolecular properties.

聚合物材料通常表现出超分子特性。

assemblage

集合体

The assemblage of molecules can lead to supramolecular formations.

分子的集合可以导致超分子形成。

反义词

molecular

分子

The molecular structure of the compound was analyzed using spectroscopy.

该化合物的分子结构通过光谱学进行分析。

monomeric

单体的

Monomeric units can polymerize to form larger supramolecular structures.

单体可以聚合形成更大的超分子结构。

例句

1.This paper is to study progress on molecule recognition of ion, macromolecule, chiral molecule and applications in some field by the use of supramolecular porphyrins.

综述了超分子卟啉化合物对离子、大分子、手性分子的识别的研究进展及其在一些领域的应用。

2.The invention discloses a cyclodextrin modified monolayer graphite, a supramolecular complex thereof, a preparation method, and application.

本发明公开了一种环糊精修饰单层石墨及其超分子复合物和制备方法及用途。

3.The supramolecular compounds with ligand of pyridine-3- sulfonate were prepared .

研究了含吡啶-3-磺酸配体的超分子体系的构筑。

4.A new supramolecular compound has been synthesized under hydrothermal conditions and characterized by element analysis, IR, TG analysis and single-crystal X-ray diffraction.

在水热条件下合成了一种新型超分子化合物,通过元素分析、红外光谱、热重分析和X射线单晶衍射方法确定了其晶体结构。

5.The reversible nature of supramolecular gels seems ideal for the use of stimulus-controlled catalytic systems by environmental stimuli.

超分子凝胶通过外界刺激可以可逆变化的性质为利用刺激可控催化体系提供了基础。

6.Emphasis has been given to the concepts of molecular recognition, molecular self-assembly, molecular devices, supramolecular materials and supramolecular catalysis.

着重介绍了分子识别、分子自组装、超分子催化、超分子器件及超分子材料等概念。

7.Ethylenediammonium cations are bounded to the inorganic chain structure through a supramolecular interaction.

乙二胺阳离子通过氢键等超分子作用与无机骨架相连。

8.The definition, scope and related informations about supramolecular chemistry have been reviewed.

本文综述了超分子化学的定义、范围及有关内容。

9.Molecular recognition and molecular self-assembly through the non-covalent bond is the two important parts of supramolecular chemistry.

基于非共价相互作用的分子识别和自组装是超分子化学研究的两个重要的领域。

10.Researchers are developing supramolecular systems for drug delivery.

研究人员正在开发用于药物传递的超分子系统。

11.Applications of supramolecular assemblies can be found in nanotechnology.

在纳米技术中可以找到超分子组装的应用。

12.The supramolecular chemistry of host-guest interactions is fascinating.

宿主-客体相互作用的超分子化学是迷人的。

13.Understanding supramolecular dynamics is crucial for designing new materials.

理解超分子动态对设计新材料至关重要。

14.The study of supramolecular structures has revolutionized materials science.

超分子结构的研究彻底改变了材料科学。

作文

The field of chemistry has always been a fascinating realm for scientists and researchers. Among the many branches of this discipline, one that stands out is the study of supramolecular 超分子 chemistry. This area focuses on the interactions between molecules, which can lead to the formation of complex structures that are more than just the sum of their parts. Understanding supramolecular 超分子 systems is crucial because they play significant roles in biological processes, material science, and nanotechnology.At its core, supramolecular 超分子 chemistry involves the study of non-covalent interactions, such as hydrogen bonds, ionic interactions, van der Waals forces, and hydrophobic effects. These interactions allow molecules to associate with one another in ways that can create intricate architectures and functions. For instance, DNA is a classic example of a supramolecular 超分子 structure, where the double helix formation is stabilized by hydrogen bonds between complementary base pairs.One of the most exciting aspects of supramolecular 超分子 chemistry is its potential applications in various fields. In medicine, for example, researchers are exploring how supramolecular 超分子 assemblies can be used for drug delivery systems. By designing carriers that can encapsulate therapeutic agents, scientists can improve the efficacy and targeting of medications. Such systems can respond to specific stimuli, releasing drugs in a controlled manner, which minimizes side effects and enhances treatment outcomes.In material science, supramolecular 超分子 chemistry has led to the development of new materials with unique properties. For instance, polymers that incorporate supramolecular 超分子 interactions can exhibit self-healing capabilities or enhanced mechanical strength. These materials can be utilized in various applications, from construction to electronics, revolutionizing the way we think about material design and functionality.Furthermore, the principles of supramolecular 超分子 chemistry are being applied in nanotechnology, where scientists are creating nanoscale devices that mimic biological functions. By harnessing the power of supramolecular 超分子 interactions, researchers can build systems that perform tasks at the molecular level, such as sensing environmental changes or delivering targeted therapies within the body.Despite the promising prospects of supramolecular 超分子 chemistry, challenges remain. Understanding the dynamics of these interactions and predicting the behavior of supramolecular 超分子 systems can be complex. However, advancements in computational chemistry and experimental techniques are paving the way for deeper insights into these fascinating structures.In conclusion, supramolecular 超分子 chemistry represents a vibrant and rapidly evolving field that bridges multiple scientific disciplines. Its implications extend far beyond traditional chemistry, impacting areas such as biology, medicine, and materials science. As researchers continue to unravel the mysteries of supramolecular 超分子 interactions, we can anticipate groundbreaking innovations that will enhance our understanding of nature and improve our technological capabilities.

化学领域一直是科学家和研究人员的迷人领域。在这个学科的众多分支中,研究超分子化学的领域尤其突出。该领域专注于分子之间的相互作用,这可以导致形成比其部分总和更复杂的结构。理解超分子系统至关重要,因为它们在生物过程、材料科学和纳米技术中发挥着重要作用。在其核心,超分子化学涉及对非共价相互作用的研究,例如氢键、离子相互作用、范德华力和疏水效应。这些相互作用允许分子以能够创建复杂架构和功能的方式相互关联。例如,DNA是一个经典的超分子结构示例,其中双螺旋结构由互补碱基对之间的氢键稳定。超分子化学最令人兴奋的方面之一是其在各个领域的潜在应用。例如,在医学中,研究人员正在探索如何利用超分子聚集体用于药物递送系统。通过设计能够封装治疗药物的载体,科学家可以提高药物的有效性和靶向性。这种系统可以响应特定刺激,以控制方式释放药物,从而最小化副作用并增强治疗效果。在材料科学中,超分子化学促成了具有独特性质的新材料的发展。例如,结合超分子相互作用的聚合物可以表现出自愈能力或增强的机械强度。这些材料可以用于各种应用,从建筑到电子产品,彻底改变我们对材料设计和功能的思考。此外,超分子化学的原则正在应用于纳米技术,科学家正在创造模仿生物功能的纳米级设备。通过利用超分子相互作用的力量,研究人员可以构建在分子水平上执行任务的系统,例如感知环境变化或在体内递送靶向疗法。尽管超分子化学的前景广阔,但仍然存在挑战。理解这些相互作用的动态以及预测超分子系统的行为可能很复杂。然而,计算化学和实验技术的进步正在为深入了解这些迷人结构铺平道路。总之,超分子化学代表了一个充满活力和快速发展的领域,连接多个科学学科。它的影响远远超出了传统化学,影响着生物学、医学和材料科学等领域。随着研究人员继续揭开超分子相互作用的奥秘,我们可以期待突破性的创新,这将增强我们对自然的理解并改善我们的技术能力。