superfluidity

简明释义

[ˌsuːpərˈfluːɪdɪti][ˌsuːpərˈfluːɪdɪti]

n. [低温] 超流动性;超流态

英英释义

Superfluidity is a phase of matter characterized by the absence of viscosity, allowing it to flow without dissipating energy.

超流体性是一种物质的相态,其特征是缺乏粘度,使其能够在不耗散能量的情况下流动。

单词用法

同义词

superfluid

超流体

The phenomenon of superfluidity occurs in helium-4 at very low temperatures.

超流体现象发生在氦-4在非常低的温度下。

反义词

viscosity

粘度

The high viscosity of the liquid made it difficult to pour.

液体的高粘度使其难以倒出。

solidification

固化

The process of solidification occurs when a liquid cools and becomes a solid.

液体冷却并变为固体的过程称为固化。

例句

1.Now, two teams of physicists say they have more direct evidence for superfluidity in the heart of a neutron star.

现在,两个小组的物理学家宣称他们掌握了中子星核心中超流的更直接的证据。

2.Scientists have accumulated indirect evidence for such pairing and superfluidity.

科学家们已经推测出了这种成对现象和超流现象的间接证据。

3.Unlike fermions, there is no limit to the number of bosons that can occupy the same quantum state, a behaviour that gives rise to the superfluidity of helium-4.

玻色子与费米子不同,占有同一量子态的玻色子数目不受限制,这一性状引发氦-4的超流性。

4.Now, two teams say they have direct evidence of such bizarre "superfluidity" in a neutron star, and other researchers seem convinced.

现在,两个小组宣称他们掌握了这种中子星内奇异超流体的直接证据,并且其他研究者似乎相信这一发现。

5.Unlike fermions, there is no limit to the number of bosons that can occupy the same quantum state, a behaviour that gives rise to the superfluidity of helium-4.

玻色子与费米子不同,占有同一量子态的玻色子数目不受限制,这一性状引发氦-4的超流性。

6.In a superfluid, the molecules move in a coordinated manner, exhibiting superfluidity.

超流体中,分子以协调的方式运动,表现出超流动性

7.One of the key features of superfluidity is the ability of the fluid to flow without viscosity.

超流动性的一个关键特征是流体能够无粘滞地流动。

8.The discovery of superfluidity has led to advancements in cryogenics and low-temperature physics.

超流动性的发现促进了低温物理学和制冷技术的发展。

9.Researchers are studying superfluidity to understand its implications for quantum mechanics.

研究人员正在研究超流动性以理解其对量子力学的影响。

10.The phenomenon of superfluidity is observed in helium at temperatures close to absolute zero.

在接近绝对零度的温度下,氦气中观察到了超流动性现象。

作文

Superfluidity is a fascinating phenomenon that occurs in certain liquids at extremely low temperatures. When we think about fluids, we often imagine them flowing and taking the shape of their containers. However, the behavior of superfluids, such as liquid helium-4, defies these conventional expectations. In a state of superfluidity (超流体性), a liquid can flow without viscosity, meaning it can move without losing energy due to friction. This unique property has intrigued scientists for decades and continues to be a subject of extensive research.The concept of superfluidity (超流体性) was first discovered in the early 20th century when researchers observed that helium-4 exhibited strange behaviors at temperatures close to absolute zero. Below a critical temperature of approximately 2.17 Kelvin, helium-4 transitions into a superfluid state. In this state, it can climb up the walls of its container and even flow through tiny openings without any resistance. This remarkable ability challenges our understanding of fluid dynamics and raises questions about the fundamental nature of matter.One of the key features of superfluidity (超流体性) is its ability to form vortices. In classical fluids, vortices are associated with turbulence and energy dissipation. However, in superfluids, vortices can exist in a stable state without causing any loss of energy. This behavior is crucial for applications in quantum mechanics and has implications for our understanding of quantum phenomena.The study of superfluidity (超流体性) has also led to significant advancements in condensed matter physics. Researchers have been able to explore the relationship between superfluidity (超流体性) and Bose-Einstein condensates, which are states of matter formed at extremely low temperatures where particles occupy the same quantum state. The connection between these two phenomena provides insights into the behavior of particles at a quantum level and enhances our understanding of the universe.In addition to theoretical implications, superfluidity (超流体性) has practical applications as well. For instance, scientists are investigating the use of superfluid helium in advanced cooling systems for superconducting materials. The unique properties of superfluid helium make it an excellent coolant, enabling the development of more efficient technologies for various industries, including electronics and medical imaging.Moreover, the exploration of superfluidity (超流体性) extends beyond traditional physics. It has sparked interest in interdisciplinary fields, such as astrophysics and cosmology. Researchers have speculated that superfluidity (超流体性) may play a role in the behavior of neutron stars, where matter exists under extreme conditions. Understanding how superfluidity (超流体性) manifests in such environments could provide valuable insights into the life cycles of stars and the evolution of the universe.In conclusion, superfluidity (超流体性) is a remarkable phenomenon that challenges our understanding of fluid dynamics and quantum mechanics. Its unique properties, such as frictionless flow and stable vortices, have profound implications for both theoretical research and practical applications. As scientists continue to explore the mysteries of superfluidity (超流体性), we can expect to uncover new insights that will deepen our understanding of the physical world and potentially lead to groundbreaking technological advancements.

超流体性是某些液体在极低温度下发生的迷人现象。当我们想到流体时,通常会想象它们流动并呈现出容器的形状。然而,超流体(例如液氦-4)的行为却违背了这些传统的期望。在超流体性(超流体性)状态下,液体可以无粘滞地流动,这意味着它可以在没有因摩擦而失去能量的情况下移动。这种独特的特性吸引了科学家数十年之久,并持续成为广泛研究的主题。超流体性(超流体性)的概念最早是在20世纪初被发现的,当时研究人员观察到液氦-4在接近绝对零度的温度下表现出奇怪的行为。在大约2.17开尔文的临界温度以下,氦-4转变为超流体状态。在这种状态下,它可以爬上容器的壁,甚至可以通过微小的开口流动而不产生任何阻力。这种非凡的能力挑战了我们对流体动力学的理解,并引发了关于物质基本性质的问题。超流体性(超流体性)的一个关键特征是它形成涡旋的能力。在经典流体中,涡旋与湍流和能量耗散相关。然而,在超流体中,涡旋可以以稳定状态存在,而不会导致任何能量损失。这种行为对于量子力学的应用至关重要,并对我们对量子现象的理解产生影响。对超流体性(超流体性)的研究也推动了凝聚态物理学的重要进展。研究人员能够探索超流体性(超流体性)与玻色-爱因斯坦凝聚态之间的关系,后者是形成于极低温下的物质状态,其中粒子占据相同的量子态。这两种现象之间的联系提供了对粒子在量子水平上行为的深刻见解,并增强了我们对宇宙的理解。除了理论意义外,超流体性(超流体性)还有实际应用。例如,科学家正在研究利用超流体氦在超导材料的先进冷却系统中的应用。超流体氦的独特性质使其成为优秀的冷却剂,能够开发出更高效的技术,适用于包括电子和医学成像在内的多个行业。此外,对超流体性(超流体性)的探索超越了传统物理学。它引发了跨学科领域的兴趣,例如天体物理学和宇宙学。研究人员推测,超流体性(超流体性)可能在中子星的行为中发挥作用,在那里物质存在于极端条件下。理解超流体性(超流体性)在这种环境中的表现可能为我们提供有关恒星生命周期和宇宙演化的宝贵见解。总之,超流体性(超流体性)是一种出色的现象,它挑战了我们对流体动力学和量子力学的理解。它独特的特性,如无摩擦流动和稳定涡旋,对理论研究和实际应用都具有深远的影响。随着科学家继续探索超流体性(超流体性)的奥秘,我们可以期待揭示出新的见解,从而加深我们对物理世界的理解,并可能导致突破性的技术进步。