hyperboloidal
简明释义
英[haɪˌpɜːbəˈlɔɪdəl]美[haɪˌpɜrbəˈlɔɪdəl]
adj. 双曲面的;北极的
英英释义
Relating to or resembling a hyperboloid, which is a type of surface generated by rotating a hyperbola around one of its principal axes. | 与双曲面有关或相似,双曲面是一种通过围绕其主轴旋转双曲线而生成的表面。 |
单词用法
双曲结构 | |
双曲坐标 | |
双曲模型 | |
设计一个双曲物体 | |
分析双曲面 | |
构造双曲形状 |
同义词
双曲线的 | The hyperboloidal shape of the structure provides unique aesthetic qualities. | 该结构的双曲面形状提供了独特的美学特征。 |
反义词
椭圆形的 | The planets in our solar system are generally ellipsoidal in shape. | 我们太阳系中的行星通常呈椭圆形。 | |
球形的 | 自然界中的许多物体,如气泡,都是球形的。 |
例句
1.The surface of propeller and its trailing vortex is divided into a number of small hyperboloidal quadrilateral panels with constant source sink and doublet distributions.
螺旋桨表面和它的尾涡面离散为四边形双曲面元,每个面元上布置等强度偶极子和源汇分布。
2.During the roof design, combined with the functional demand, the novel hyperboloidal roof with prestressed cabled truss system was adopted.
屋面设计中,结合建筑功能要求,采用了新颖的预应力索桁架双曲屋面结构体系。
3.The trajectories of the negative ions in the negative ion atom probe have been calculated for hyperboloidal tip shape.
本文基于双曲面形样品针尖,计算了负离子原子探针中负离子的飞行轨迹。
4.The surface of propeller and its trailing vortex is divided into a number of small hyperboloidal quadrilateral panels with constant source sink and doublet distributions.
螺旋桨表面和它的尾涡面离散为四边形双曲面元,每个面元上布置等强度偶极子和源汇分布。
5.Engineers often use hyperboloidal 双曲面 models to optimize the aerodynamics of vehicles.
工程师们常常使用hyperboloidal 双曲面模型来优化车辆的空气动力学性能。
6.The artist was inspired by the hyperboloidal 双曲面 shapes found in nature for her sculpture.
这位艺术家受到自然界中发现的hyperboloidal 双曲面形状的启发,创作了她的雕塑。
7.In mathematics, the hyperboloidal 双曲面 can be used to model certain types of surfaces.
在数学中,hyperboloidal 双曲面可用于建模某些类型的表面。
8.The architect designed a building with a hyperboloidal 双曲面 roof to enhance its aesthetic appeal.
建筑师设计了一座具有hyperboloidal 双曲面屋顶的建筑,以增强其美学吸引力。
9.The hyperboloidal 双曲面 structure of the bridge allows for a unique design that withstands strong winds.
桥的hyperboloidal 双曲面结构允许独特的设计,能够抵御强风。
作文
The study of geometry often leads us into fascinating realms of shapes and structures that define our understanding of space. Among these shapes, the concept of a hyperboloidal structure stands out due to its unique properties and applications. A hyperboloidal shape is characterized by its hyperboloid geometry, which can be seen in various natural and man-made objects. This essay will explore the significance of hyperboloidal forms in architecture, engineering, and nature, demonstrating their importance in both aesthetic and functional contexts.In architecture, the use of hyperboloidal shapes has gained popularity for their striking visual appeal and structural efficiency. One prominent example is the design of cooling towers in power plants, which often take on a hyperboloidal form. This shape not only provides an iconic silhouette against the skyline but also enhances airflow and cooling efficiency. The curvature of a hyperboloidal structure allows for a distribution of stress that minimizes material usage while maximizing strength, making it an ideal choice for engineers looking to balance aesthetics with practicality.Moreover, the hyperboloidal shape is not limited to industrial applications; it has also found its way into modern art and sculpture. Artists have embraced the fluid lines and dynamic forms of hyperboloidal designs to create pieces that evoke movement and energy. For instance, sculptures featuring hyperboloidal elements can capture light and shadow in mesmerizing ways, inviting viewers to experience the artwork from multiple perspectives. This interplay between form and function highlights the versatility of hyperboloidal shapes in creative expression.In nature, hyperboloidal structures can be observed in various biological forms. The shells of certain mollusks, for example, exhibit hyperboloidal characteristics, showcasing how nature often employs mathematical principles in its designs. These natural hyperboloidal formations serve crucial functions, such as providing protection and facilitating growth. The efficiency of these shapes in nature inspires scientists and engineers alike, prompting further exploration into biomimicry and sustainable design practices.Furthermore, the mathematical principles underlying hyperboloidal shapes are essential in fields such as physics and computer graphics. In physics, hyperboloidal models help describe various phenomena, including gravitational fields and the behavior of light. Understanding these principles enables researchers to develop more accurate simulations and predictions about the physical world. In computer graphics, hyperboloidal shapes are utilized to create realistic 3D models, enhancing the visual experience in video games and simulations.In conclusion, the significance of hyperboloidal shapes extends far beyond their geometric definition. Their applications in architecture, art, nature, and science reveal a complex interplay of beauty and functionality. As we continue to explore the potential of hyperboloidal forms, we uncover new possibilities for innovation and creativity. Embracing these shapes in various disciplines not only enriches our understanding of geometry but also inspires future generations to appreciate the elegance of mathematical forms in our world.
几何学的研究常常引领我们进入形状和结构的迷人领域,这些形状和结构定义了我们对空间的理解。在这些形状中,hyperboloidal 结构由于其独特的属性和应用而显得尤为突出。hyperboloidal 形状的特点是其双曲面几何,可以在各种自然和人造物体中看到。这篇文章将探讨 hyperboloidal 形式在建筑、工程和自然中的重要性,展示它们在美学和功能方面的重要性。在建筑中,hyperboloidal 形状因其引人注目的视觉吸引力和结构效率而受到欢迎。一个显著的例子是电厂中的冷却塔设计,这些冷却塔通常采用 hyperboloidal 形式。这种形状不仅提供了天际线上的标志性轮廓,还增强了气流和冷却效率。hyperboloidal 结构的曲率允许应力的分布,从而最小化材料使用,同时最大化强度,使其成为工程师在追求美学与实用性之间寻找平衡的理想选择。此外,hyperboloidal 形状并不仅限于工业应用;它还进入了现代艺术和雕塑的领域。艺术家们利用 hyperboloidal 设计的流畅线条和动态形式,创造出唤起运动和能量的作品。例如,具有 hyperboloidal 元素的雕塑能够以迷人的方式捕捉光影,邀请观众从多个角度体验艺术作品。这种形式与功能之间的相互作用突显了 hyperboloidal 形状在创意表达中的多样性。在自然界中,hyperboloidal 结构可以在各种生物形态中观察到。例如,某些软体动物的壳展现出 hyperboloidal 特征,展示了自然如何常常在其设计中采用数学原理。这些自然的 hyperboloidal 形成发挥着至关重要的功能,如提供保护和促进生长。这些形状在自然界中的效率激励着科学家和工程师,促使他们进一步探索仿生学和可持续设计实践。此外,支撑 hyperboloidal 形状的数学原理在物理学和计算机图形学等领域中至关重要。在物理学中,hyperboloidal 模型帮助描述各种现象,包括引力场和光的行为。理解这些原理使研究人员能够开发出更准确的模拟和预测,从而更好地理解物理世界。在计算机图形学中,hyperboloidal 形状被用于创建逼真的3D模型,增强了视频游戏和模拟中的视觉体验。总之,hyperboloidal 形状的重要性远远超出了其几何定义。它们在建筑、艺术、自然和科学中的应用揭示了美与功能之间复杂的相互作用。随着我们继续探索 hyperboloidal 形式的潜力,我们发现了创新和创造的新可能性。在各个学科中接受这些形状,不仅丰富了我们对几何的理解,也激励着未来的世代欣赏我们世界中数学形式的优雅。