magnetization
简明释义
英[ˌmæɡnətɪˈzeɪʃən]美[ˌmæɡnətɪˈzeɪʃən]
n. 磁化
英英释义
The process by which a material becomes magnetized, acquiring magnetic properties due to the alignment of its internal magnetic domains. | 材料通过内部磁域的排列而获得磁性特性的过程。 |
单词用法
[计]饱和磁化,磁饱和 | |
剩磁;剩余磁化强度 |
同义词
磁性 | The magnetism of the material can be enhanced through a specific magnetization process. | 通过特定的磁化过程,可以增强材料的磁性。 |
反义词
例句
1.Magnetization of the fibers reduced with increasing of draw ratio and core-sheath ratio of the fibers.
随着纤维的皮芯比的增加和拉伸倍数的提高,纤维的磁感应强度下降。
2.Most of the time display is likely to be led by magnetization.
大多数时候很可能是显示器被磁化导致。
3.The magnetization methods and inspection techniques were introduced.
对磁化方法和检测工艺进行了介绍。
4.This fact is duo to the transition to ferromagnetic phase from paramagnetic phase and to the reduction of the difference of magnetization.
这是由于材料中的顺磁相在低温时变成铁磁相,使两相的饱和磁化强度差减小的结果。
5.Unclosed magnetic curve is be build by simulation data of different specification drill pipe, which be used a rule to select optimum magnetization region.
应用不同规格钻杆的仿真数据,建立不同规格钻杆的不同开路磁化曲线,并以此作为最佳磁化强度的选择依据。
6.Characteristics and advantages of double loop and full ac magnetization method are described by comparing magnetization methods home and abroad.
在比较国内外磁化方法的基础上,着重阐述了双回路全交流磁化方法的结构特点和优越性。
7.In the resulting pillared layer framework, the pillars determine the interactions between individual layers, enabling spontaneous magnetization.
在所得的柱状框架层中,柱状支撑层最终决定了各个层之间的相互作用,并使其达到自发磁化的效果。
8.Consider the magnetization of a single core in the absence of an ambient field now.
现在,在研究一下在没有背景场的情况下,单个磁芯的磁化强度。
9.In data storage devices, magnetization 磁化 patterns represent binary information.
在数据存储设备中,magnetization 磁化模式代表二进制信息。
10.The magnetization 磁化 of the material can be reversed by applying an external magnetic field.
通过施加外部磁场,可以逆转材料的magnetization 磁化。
11.The scientist measured the magnetization 磁化 of the sample using a SQUID magnetometer.
科学家使用超导量子干涉仪(SQUID)测量样品的magnetization 磁化。
12.The process of magnetization 磁化 in ferromagnetic materials is crucial for their application in electric motors.
铁磁材料中的magnetization 磁化过程对其在电动机中的应用至关重要。
13.Scientists are studying the effects of temperature on the magnetization 磁化 of certain alloys.
科学家们正在研究温度对某些合金的magnetization 磁化的影响。
作文
Magnetization is a fundamental concept in the field of physics, specifically in the study of magnetism. It refers to the process by which a material becomes magnetized, meaning it acquires magnetic properties. This phenomenon occurs when the magnetic moments of individual atoms or molecules within a material align in a particular direction, resulting in a net magnetic field. Understanding magnetization (磁化) is crucial for various applications, including the development of magnetic materials, electric motors, and data storage devices.The process of magnetization (磁化) can be induced in several ways. One common method is by exposing a ferromagnetic material, such as iron, to an external magnetic field. When the material is placed in this field, the magnetic domains within it begin to align with the direction of the field. As more domains align, the material becomes increasingly magnetized until it reaches saturation, where almost all domains are aligned.Another way to achieve magnetization (磁化) is through the application of electric current. In electromagnets, for example, a coil of wire carrying an electric current generates a magnetic field, which can magnetize a nearby ferromagnetic core. This principle is widely used in various technologies, from household appliances to industrial machinery.The extent of magnetization (磁化) can vary depending on the material's properties. Different materials respond differently to magnetic fields; some become strongly magnetized, while others exhibit only weak magnetization. For instance, ferromagnetic materials like cobalt and nickel can retain their magnetic properties even after the external field is removed, a phenomenon known as remanence. In contrast, paramagnetic materials show temporary magnetization, returning to their original state once the external field is removed.In addition to its practical applications, magnetization (磁化) plays a significant role in scientific research. Researchers study magnetization (磁化) to understand the fundamental interactions between magnetic fields and matter. This knowledge contributes to advancements in materials science, nanotechnology, and even medical imaging techniques like MRI (Magnetic Resonance Imaging). By exploring how different materials respond to magnetization (磁化), scientists can develop new materials with tailored magnetic properties for specific applications.Overall, magnetization (磁化) is a vital aspect of magnetism that has far-reaching implications in both technology and science. Its understanding allows us to harness magnetic properties for various purposes, enhancing our ability to innovate and improve existing technologies. As we continue to explore the intricacies of magnetization (磁化), we may uncover new phenomena and applications that can further transform our world. Whether it’s in the realm of electronics, transportation, or healthcare, the significance of magnetization (磁化) cannot be overstated, making it an essential topic for study and exploration in the modern age.
磁化是物理学领域中的一个基本概念,特别是在磁性研究中。它指的是材料变得磁化的过程,即获得磁性。当材料内部的单个原子或分子的磁矩以特定方向排列时,就会发生这种现象,从而形成净磁场。理解磁化(magnetization)对于各种应用至关重要,包括磁性材料、电动机和数据存储设备的发展。磁化(magnetization)可以通过几种方式引发。一种常见的方法是将铁磁材料(例如铁)暴露在外部磁场中。当材料置于该磁场中时,内部的磁畴开始与磁场的方向对齐。随着更多的磁畴对齐,材料的磁化程度逐渐增加,直到达到饱和状态,此时几乎所有的磁畴都已对齐。另一种实现磁化(magnetization)的方法是通过施加电流。例如,在电磁铁中,携带电流的线圈会产生磁场,该磁场可以使附近的铁磁核心磁化。这一原理广泛应用于从家用电器到工业机械的各种技术中。磁化(magnetization)的程度可能因材料的性质而异。不同的材料对磁场的反应不同;有些材料会强烈磁化,而其他材料则表现出微弱的磁化。例如,钴和镍等铁磁材料即使在去除外部磁场后也能保留其磁性,这种现象称为剩余磁性。相比之下,顺磁材料显示出暂时的磁化,一旦外部磁场去除,它们会恢复到原来的状态。除了实际应用之外,磁化(magnetization)在科学研究中也起着重要作用。研究人员研究磁化(magnetization)以了解磁场与物质之间的基本相互作用。这些知识有助于材料科学、纳米技术甚至医学成像技术(如MRI)的进步。通过探索不同材料对磁化(magnetization)的响应,科学家可以开发出具有特定应用的新材料。总的来说,磁化(magnetization)是磁性的重要方面,对技术和科学具有深远的影响。它的理解使我们能够利用磁性特性进行各种目的,增强我们创新和改进现有技术的能力。随着我们继续探索磁化(magnetization)的复杂性,我们可能会发现新的现象和应用,进一步改变我们的世界。无论是在电子、交通还是医疗保健领域,磁化(magnetization)的重要性都不容小觑,使其成为现代时代研究和探索的一个重要主题。