scintillator

简明释义

[ˈsɪntɪleɪtə(r)][ˈsɪntlˌeɪtər]

n. 荧光材料;闪烁计数器,闪烁体

英英释义

A scintillator is a material that exhibits scintillation, the process of emitting light when it absorbs ionizing radiation.

闪烁体是一种材料,当其吸收电离辐射时,会发出光的现象称为闪烁。

单词用法

organic scintillator

有机闪烁体

inorganic scintillator

无机闪烁体

scintillator detector

闪烁体探测器

scintillator material

闪烁体材料

scintillation light

闪烁光

scintillator crystal

闪烁体晶体

同义词

phosphor

荧光材料

Phosphors are often used in CRT displays to convert electron beams into visible light.

荧光材料通常用于CRT显示器,将电子束转换为可见光。

detector

探测器

Detectors are essential in various scientific applications for measuring radiation levels.

探测器在各种科学应用中对于测量辐射水平至关重要。

luminescent material

发光材料

Luminescent materials can be found in glow-in-the-dark products, providing illumination without heat.

发光材料可以在夜光产品中找到,提供无热的照明。

反义词

absorber

吸收体

The absorber effectively reduces the intensity of radiation.

吸收体有效地降低了辐射的强度。

non-emissive material

无发射材料

Non-emissive materials are used in applications where light emission is not desired.

在不需要光发射的应用中,使用无发射材料。

例句

1.Some important transparent ceramics such as infrared ceramics, laser ceramics and scintillator ceramic were introduced and the developing trends were overviewed briefly.

分别介绍了红外陶瓷、激光陶瓷、闪烁陶瓷,并对他们未来的发展趋势进行简要的综述。

2.The ashing and dissolution procedure for the plastic scintillator sample preparation was established.

建立了样品的灰化、溶解程序,并对质谱条件进行了探索。

3.The CCD image sensor efficiently detects light emitted from the scintillator since it has high sensitivity to scintillator emission wavelengths (near 550 nm).

由于这些CCD图像传感器对闪烁体发光(波长约为550nm)具有较高的灵敏度,因此可以有效地探测到由闪烁体发出的光。

4.The article focus on the scintillant performance Gadolinium glass _ a new type of scintillator.

本文对钆玻璃的闪烁性能做出了初步的研究。

5.Additionally, the light absorber minimizes the amount of light transferred between adjacent scintillator elements to limit cross-talk.

此外,光吸收体使在相邻闪烁体单元之间传输的光量最小,以限制串扰的产生。

6.As an important inorganic material, metal tungstates have the wide range of applications in the photoluminescence, microwave, optical fiber, scintillator, humidity sensors, magnetic and catalyst.

作为一种重要的无机材料,金属钨酸盐在光致发光、微波、光纤、闪烁体、湿度感应、磁性以及催化剂等方面都有着广泛的应用前景。

7.As an important inorganic material, metal tungstates have the wide range of applications in the photoluminescence, microwave, optical fiber, scintillator, humidity sensors, magnetic and catalyst.

作为一种重要的无机材料,金属钨酸盐在光致发光、微波、光纤、闪烁体、湿度感应、磁性以及催化剂等方面都有着广泛的应用前景。

8.The new scintillator material showed improved light yield compared to the previous version.

新型的闪烁体材料相比于之前的版本显示出更高的光产率。

9.The physicist used a scintillator to detect the particles emitted from the radioactive source.

物理学家使用一个闪烁体来探测从放射性源发出的粒子。

10.In the lab, we tested different types of scintillators for their efficiency in gamma-ray detection.

在实验室中,我们测试了不同类型的闪烁体在伽马射线探测中的效率。

11.We installed a scintillator in the radiation monitoring system to enhance safety measures.

我们在辐射监测系统中安装了一个闪烁体以增强安全措施。

12.The scintillator is crucial for the operation of the PET scanner in medical imaging.

在医学成像中,闪烁体对PET扫描仪的操作至关重要。

作文

In the realm of modern physics and engineering, the term scintillator refers to a material that exhibits scintillation, which is the process of emitting light when it absorbs ionizing radiation. This fascinating property makes scintillators incredibly valuable in various applications, especially in the fields of nuclear physics, medical imaging, and radiation detection. Understanding the function and significance of scintillators can provide insight into how we detect and measure radiation, which is crucial for both safety and scientific research.The basic principle behind a scintillator is relatively simple. When high-energy particles or gamma rays interact with the material, they transfer some of their energy to the atoms within the scintillator. This energy excites the atoms, causing them to emit photons, or light particles, as they return to their ground state. The emitted light can then be detected and measured, allowing scientists and engineers to quantify the amount of radiation present. There are various types of scintillators, including organic scintillators, inorganic scintillators, and plastic scintillators. Each type has its own unique properties and advantages. For example, inorganic scintillators like sodium iodide (NaI) are known for their high light output and efficiency in detecting gamma rays. On the other hand, organic scintillators often have faster response times, making them suitable for certain applications in particle physics.One of the most significant uses of scintillators is in medical imaging, particularly in positron emission tomography (PET) scans. In this procedure, radioactive tracers are introduced into the body, and the resulting gamma rays emitted during decay are detected by scintillator materials. The ability to visualize metabolic processes in real-time has revolutionized diagnostics and treatment planning in medicine. Without scintillators, such advanced imaging techniques would not be possible.In addition to medical applications, scintillators play a critical role in radiation safety and monitoring. They are used in devices such as Geiger counters and personal dosimeters, which help ensure that workers in nuclear facilities or medical environments are not exposed to harmful levels of radiation. The portability and effectiveness of scintillator detectors make them an essential tool in maintaining safety standards in various industries.Furthermore, scintillators are also utilized in scientific research, particularly in experiments involving particle collisions, such as those conducted at particle accelerators like the Large Hadron Collider (LHC). Here, scintillators help detect secondary particles produced during high-energy collisions, contributing to our understanding of fundamental physics and the universe's building blocks.In conclusion, the term scintillator encompasses a wide range of materials and applications that are vital in detecting and measuring ionizing radiation. From enhancing medical imaging techniques to ensuring safety in nuclear environments, scintillators have become indispensable tools in both science and industry. As technology continues to advance, the development and optimization of scintillator materials will likely lead to even more innovative applications, further solidifying their importance in our understanding of the physical world.

在现代物理学和工程学的领域中,术语scintillator指的是一种材料,当其吸收电离辐射时,会表现出闪烁现象,即发出光的过程。这种迷人的特性使得scintillators在多个应用中极具价值,特别是在核物理、医学成像和辐射探测等领域。理解scintillators的功能和重要性可以为我们提供如何检测和测量辐射的洞察,这对安全和科学研究至关重要。scintillator的基本原理相对简单。当高能粒子或伽马射线与材料相互作用时,它们将部分能量转移给scintillator内部的原子。这种能量使原子激发,从而在返回基态时发出光子或光粒子。然后,发出的光可以被检测和测量,从而允许科学家和工程师量化存在的辐射量。有多种类型的scintillators,包括有机闪烁体、无机闪烁体和塑料闪烁体。每种类型都有自己独特的属性和优点。例如,无机scintillators如碘化钠(NaI)以其高光输出和有效探测伽马射线的能力而闻名。另一方面,有机scintillators通常具有更快的响应时间,使其适合某些粒子物理学应用。scintillators最重要的用途之一是在医学成像中,特别是在正电子发射断层扫描(PET)中。在这一过程中,放射性示踪剂被引入体内,衰变过程中发出的伽马射线由scintillator材料探测到。实时可视化代谢过程的能力彻底改变了医学中的诊断和治疗规划。如果没有scintillators,这样的先进成像技术将无法实现。除了医学应用外,scintillators在辐射安全和监测中也发挥着关键作用。它们用于如盖革计数器和个人剂量计等设备,帮助确保核设施或医疗环境中的工作人员不会暴露于有害的辐射水平。scintillator探测器的便携性和有效性使其成为维护各行业安全标准的重要工具。此外,scintillators还被用于科学研究,特别是在涉及粒子碰撞的实验中,例如在大型强子对撞机(LHC)进行的实验。在这里,scintillators帮助探测在高能碰撞中产生的次级粒子,促进了我们对基本物理学和宇宙构建块的理解。总之,术语scintillator涵盖了一系列在检测和测量电离辐射方面至关重要的材料和应用。从增强医学成像技术到确保核环境的安全,scintillators已成为科学和工业中不可或缺的工具。随着技术的不断进步,scintillator材料的开发和优化可能会导致更多创新应用的出现,进一步巩固其在我们理解物理世界中的重要性。