interferometer

简明释义

[ˌɪntəfəˈrɒmɪtə(r)][ˌɪntərfɪˈrɑːmətər]

n. [光] 干涉仪;干涉计

英英释义

An interferometer is an instrument that uses the interference of waves, typically light or radio waves, to measure small distances, changes in refractive index, or other physical phenomena.

干涉仪是一种利用波的干涉,通常是光波或无线电波,来测量微小距离、折射率变化或其他物理现象的仪器。

单词用法

laser interferometer

激光干涉仪

michelson interferometer

迈克耳孙干涉仪

同义词

interference meter

干涉计

The interference meter is used in precision measurements of optical components.

干涉计用于光学元件的精密测量。

wavefront sensor

波前传感器

A wavefront sensor can help analyze the quality of laser beams.

波前传感器可以帮助分析激光束的质量。

反义词

coherent light source

相干光源

A coherent light source is essential for the operation of an interferometer.

相干光源是干涉仪运行的关键。

detector

探测器

The detector measures the interference pattern produced by the interferometer.

探测器测量由干涉仪产生的干涉图样。

例句

1.Research on Angle measurement accuracy of short-baseline interferometer system.

短基线干涉仪系统角度测量精度的研究。

2.The light is resolved by prisms, gratings, or by an interferometer.

光线用棱镜、光栅或干涉仪分解。

3.An alternating current phase tracking (PTAC) homodyne scheme has been used to process output signal of the Michelson interferometer.

在信号处理过程中采用了交流相位跟踪零差补偿技术(PTAC)。

4.A method to construct the microstructure Michelsons interferometer with semiconductor laser is introduced in this paper.

该文介绍了一种用半导体激光器构建微型迈克尔逊干涉仪的方法。

5.A simplified version of an OCT system using a fiber-based Michelson interferometer-type configuration is illustrated in Figure 1.

图1是OCT系统的一个简化形式,该系统使用光纤迈克耳逊干涉仪类型的配置。

6.A fiber Fizeau interferometer for measurement of micro-vibration of MEMS devices is presented, which is simple in configuration and easy to operate.

提出一种结构简单、使用方便的用于微电子机械部件运动状态测量的光纤斐索干涉装置。

7.Another interferometer with arms of the same length is under construction at Kamioka in Japan.

另一个拥有同样长度激光干涉管臂的项目于日本的神岗正在建设之中。

8.We present a method to measure the evanescent field by Michelson interferometer.

提出了一种用迈克尔逊干涉仪探测隐失场的方法。

9.The new interferometer design allows for greater sensitivity in measurements.

新的干涉仪设计允许在测量中获得更高的灵敏度。

10.The scientist used a interferometer to measure the wavelength of the light accurately.

科学家使用干涉仪准确测量光的波长。

11.In gravitational wave detection, an interferometer plays a crucial role in observing tiny disturbances.

在引力波探测中,干涉仪在观察微小扰动方面起着至关重要的作用。

12.A fiber optic interferometer can be used for precise temperature measurements.

光纤干涉仪可用于精确的温度测量。

13.Astronomers use a radio interferometer to study distant celestial objects.

天文学家使用射电干涉仪研究遥远的天体。

作文

The concept of an interferometer is fundamental in the field of physics, particularly in the study of wave phenomena. An interferometer is an instrument that uses the principle of interference to measure various properties of light or other waves. By splitting a beam of light into two paths and then recombining them, an interferometer can detect tiny changes in distance, refractive index, or other physical properties. This capability makes it invaluable in many scientific applications, including astronomy, telecommunications, and even gravitational wave detection.One of the most famous types of interferometer is the Michelson interferometer, which was invented by Albert A. Michelson in the late 19th century. This device played a crucial role in the development of modern physics. The Michelson interferometer splits a beam of light into two paths using a beam splitter. Each path reflects off a mirror before returning to the beam splitter, where the two beams are recombined. When they overlap, they create an interference pattern that can be analyzed to provide precise measurements.The applications of interferometers extend beyond basic research. In the field of telecommunications, for example, interferometers are used to measure the quality of optical fibers. By analyzing the interference patterns produced when light travels through these fibers, engineers can determine how much signal is lost and make necessary adjustments. This is critical for maintaining efficient communication systems.In astronomy, interferometers have revolutionized our understanding of the universe. Radio interferometers, such as the Very Large Array (VLA) in New Mexico, combine signals from multiple radio telescopes to create high-resolution images of astronomical objects. This technique allows astronomers to study distant galaxies, stars, and other celestial phenomena in unprecedented detail.Moreover, the detection of gravitational waves, ripples in spacetime caused by massive cosmic events, relies heavily on interferometers. The Laser Interferometer Gravitational-Wave Observatory (LIGO) uses highly sensitive interferometers to detect the minute changes in distance caused by passing gravitational waves. The success of LIGO in detecting these waves has opened up a new era in astrophysics, allowing scientists to observe the universe in a completely different way.Despite their complexity, interferometers operate on a simple principle: the interference of waves. This fundamental idea not only underpins the design of these instruments but also illustrates the interconnectedness of various fields in science. From measuring tiny distances with extreme precision to exploring the cosmos, interferometers showcase the power of human ingenuity in understanding the natural world.In conclusion, the interferometer is more than just a scientific instrument; it is a gateway to deeper insights into the universe. Its ability to measure and analyze wave interference has made it an essential tool in both theoretical and applied physics. As technology continues to advance, the potential applications of interferometers will likely expand, leading to new discoveries and innovations in various scientific fields.

干涉仪的概念在物理学领域中是基础性的,特别是在波动现象的研究中。干涉仪是一种利用干涉原理来测量光或其他波的各种属性的仪器。通过将一束光分成两条路径,然后重新组合,干涉仪可以检测到微小的距离变化、折射率或其他物理特性。这种能力使其在许多科学应用中变得不可或缺,包括天文学、电信,甚至引力波探测。最著名的干涉仪之一是迈克尔逊干涉仪,它是阿尔伯特·A·迈克尔逊在19世纪末发明的。这一装置在现代物理学的发展中发挥了关键作用。迈克尔逊干涉仪通过一个光束分离器将一束光分成两条路径。每条路径在反射镜上反射后返回光束分离器,在那里两束光被重新组合。当它们重叠时,会形成一个干涉图案,可以进行分析以提供精确的测量。干涉仪的应用超越了基础研究。例如,在电信领域,干涉仪用于测量光纤的质量。通过分析光在这些光纤中传播时产生的干涉图案,工程师可以确定信号丢失的程度并做出必要的调整。这对于维护高效的通信系统至关重要。在天文学中,干涉仪彻底改变了我们对宇宙的理解。射电干涉仪,如新墨西哥州的非常大阵列(VLA),结合来自多个射电望远镜的信号,以创建天体对象的高分辨率图像。这种技术使天文学家能够以前所未有的细节研究遥远的星系、恒星和其他天体现象。此外,引力波的探测,宇宙事件引起的时空涟漪,严重依赖于干涉仪。激光干涉引力波天文台(LIGO)使用高度敏感的干涉仪来检测引力波经过时造成的微小距离变化。LIGO成功探测到这些波标志着天体物理学的新纪元,使科学家能够以完全不同的方式观察宇宙。尽管干涉仪很复杂,但它们的工作原理基于一个简单的原则:波的干涉。这个基本思想不仅支撑了这些仪器的设计,还展示了科学各个领域之间的相互联系。从极其精确地测量微小距离到探索宇宙,干涉仪展示了人类在理解自然世界方面的创造力。总之,干涉仪不仅仅是一种科学仪器;它是深入洞察宇宙的门户。它测量和分析波干涉的能力使其成为理论和应用物理学中的重要工具。随着技术的不断进步,干涉仪的潜在应用可能会扩大,从而在各个科学领域带来新的发现和创新。