plasmons

简明释义

[ˈplæzmənz][ˈplæzmənz]

等离激元

英英释义

Plasmons are collective excitations of the free electron gas density in a metal, which can result from the interaction of light with the electrons in a material.

等离子体子是金属中自由电子气密度的集体激发,源于光与材料中电子的相互作用。

单词用法

localized surface plasmons

局部表面等离子体

surface plasmon resonance

表面等离子共振

excitation of plasmons

等离子体的激发

damping of plasmons

等离子体的衰减

同义词

surface plasmon

表面等离子体

Surface plasmons are used in biosensing applications.

表面等离子体被用于生物传感应用。

localized surface plasmon

局部表面等离子体

Localized surface plasmons can enhance the electromagnetic field.

局部表面等离子体可以增强电磁场。

反义词

phonons

声子

Phonons are quantized modes of vibrations occurring in a rigid crystal lattice.

声子是发生在刚性晶格中的量化振动模式。

electrons

电子

Electrons play a key role in electrical conductivity and chemical bonding.

电子在电导率和化学键合中起着关键作用。

例句

1.We propose a new method to realize degenerate four-wave-mixing in nonlinear optical thin films using long-range surface-plasmons-wave as pumps.

本文提出一种以长程表面电磁激元波作为泵波,在非线性介质膜中实现简并四波混频的新方案。

2.The laser light caused the gold atoms to generate a burst of plasmons.

激光束使金原子产生爆发出等离子体激元。

3.The researchers found that the trajectory of plasmons became increasingly disorganized as they strayed.

研究者发现当等离子体辐射开来,其轨迹是杂乱无章的。

4.Optical properties of surface plasmons induced by the plan of a periodically arranged dielectric spheres on the metal slab;

采用溶胶 凝胶金属氧化物半导体薄膜 ,作为表面等离子体激元共振效应的光化学传感器的传感介质。

5.These plasmons radiated outward from a single point, just as scientists think particles of matter radiated from a single point following the big bang.

这些等离子体激元从一点向外辐射,就像科学家设想的在大爆炸后物质粒子从一点向周围辐射运动一样。

6.The results obtained from multiple scattering method show that the periodic dielectric spheres on the upper surface of the metal could induce surface plasmons on the metal-dielectric interface.

用多重散射法计算的结果显示金属上侧的周期性排列的电介质小球可诱发金属-电介质表面上的表面等离子激元。

7.Surface-enhanced Raman scattering (SERS) relies on the excitation of plasmons 等离子体 to amplify signals from molecules.

表面增强拉曼散射(SERS)依赖于plasmons 等离子体的激发来放大分子的信号。

8.Scientists are exploring the use of plasmons 等离子体 in creating faster electronic devices.

科学家们正在探索使用plasmons 等离子体来制造更快的电子设备。

9.In the field of nanotechnology, researchers are studying how to manipulate plasmons 等离子体 to improve the efficiency of solar cells.

在纳米技术领域,研究人员正在研究如何操控plasmons 等离子体以提高太阳能电池的效率。

10.The interaction between light and plasmons 等离子体 can lead to new ways of sensing biological molecules.

光与plasmons 等离子体之间的相互作用可以导致新的生物分子传感方法。

11.The study of plasmons 等离子体 has opened up new avenues in the development of photonic circuits.

plasmons 等离子体的研究为光子电路的发展开辟了新的途径。

作文

In recent years, the field of nanotechnology has gained significant attention for its potential applications in various industries, including medicine, electronics, and energy. One of the fascinating phenomena observed in nanostructured materials is the excitation of collective oscillations of free electrons, known as plasmons (等离子体波). These plasmons play a crucial role in enhancing light-matter interactions at the nanoscale, which can lead to remarkable advancements in optical devices and sensors.The concept of plasmons originates from the behavior of electrons in metals. When light interacts with a metal surface, it can induce coherent oscillations of the conduction electrons, resulting in the formation of plasmons. This phenomenon is particularly pronounced in metallic nanostructures, where the dimensions are comparable to the wavelength of light. As a result, plasmons can be excited at specific wavelengths, leading to localized surface plasmon resonance (LSPR), which is highly sensitive to changes in the surrounding environment.One of the most exciting applications of plasmons is in the field of biosensing. By utilizing the sensitivity of LSPR, researchers have developed sensors capable of detecting biomolecules at extremely low concentrations. For instance, gold nanoparticles can be functionalized with specific antibodies that bind to target proteins. When these nanoparticles are exposed to a sample containing the target proteins, the binding event causes a shift in the resonance wavelength of the plasmons, allowing for the detection of the biomolecules. This technique holds great promise for early disease diagnosis and monitoring.Moreover, plasmons can also enhance the efficiency of solar cells. By incorporating metallic nanoparticles into the active layer of solar cells, the absorption of light can be significantly increased due to the excitation of plasmons. This enhancement can lead to improved power conversion efficiencies, making solar energy more viable as a renewable energy source. Researchers are continually exploring new ways to optimize the design of these plasmonic structures to maximize their effectiveness in energy harvesting applications.In addition to sensing and energy applications, plasmons are also being investigated for use in information technology. The ability to manipulate light at the nanoscale using plasmons opens up possibilities for developing faster and more efficient data transmission systems. Plasmonic waveguides, for example, can guide light signals with minimal loss, potentially revolutionizing the way data is processed and transmitted in future electronic devices.Despite the promising applications of plasmons, there are still challenges to overcome. One significant issue is the damping of plasmons due to scattering and absorption losses in metals. Researchers are actively working on finding materials with lower loss characteristics, such as graphene and other two-dimensional materials, to enhance the performance of plasmonic devices.In conclusion, plasmons represent a fascinating area of study within nanotechnology, with the potential to transform various fields through their unique properties. From biosensing to energy harvesting and information technology, the applications of plasmons are vast and varied. As research continues to advance, we can expect to see even more innovative uses of plasmons that could significantly impact our daily lives and technological landscape.

近年来,纳米技术领域因其在医学、电子和能源等多个行业的潜在应用而引起了广泛关注。在纳米结构材料中观察到的一种迷人现象是自由电子的集体振荡被激发,这被称为plasmons(等离子体波)。这些plasmons在增强光与物质的相互作用方面起着至关重要的作用,这可以导致光学设备和传感器的显著进展。plasmons这一概念源自金属中电子的行为。当光与金属表面相互作用时,它可以诱导导电电子的相干振荡,从而形成plasmons。这种现象在金属纳米结构中尤为明显,因为其尺寸与光的波长相当。因此,plasmons可以在特定波长下被激发,导致局部表面等离子体共振(LSPR),对周围环境的变化高度敏感。plasmons最令人兴奋的应用之一是在生物传感领域。通过利用LSPR的敏感性,研究人员开发了能够以极低浓度检测生物分子的传感器。例如,金纳米颗粒可以用特定抗体功能化,以便与目标蛋白结合。当这些纳米颗粒暴露于含有目标蛋白的样本中时,结合事件会导致plasmons的共振波长发生偏移,从而允许检测生物分子。这项技术在早期疾病诊断和监测方面具有巨大前景。此外,plasmons还可以增强太阳能电池的效率。通过将金属纳米颗粒纳入太阳能电池的活性层,可以显著提高光的吸收率,因为plasmons被激发。这种增强可以导致电力转换效率的提高,使太阳能作为可再生能源变得更加可行。研究人员不断探索优化这些等离子体结构设计的新方法,以最大限度地提高其在能源收集应用中的有效性。除了传感和能源应用外,plasmons还被研究用于信息技术。利用plasmons在纳米尺度上操控光的能力为开发更快、更高效的数据传输系统开辟了可能性。例如,等离子体波导可以以最小的损失引导光信号,潜在地彻底改变未来电子设备中数据的处理和传输方式。尽管plasmons的应用前景广阔,但仍然存在一些挑战需要克服。其中一个重大问题是由于金属中的散射和吸收损失导致的plasmons的阻尼。研究人员正在积极寻找具有更低损失特性的材料,如石墨烯和其他二维材料,以增强等离子体设备的性能。总之,plasmons代表了纳米技术中一个迷人的研究领域,具有通过其独特特性转变各个领域的潜力。从生物传感到能源收集和信息技术,plasmons的应用广泛而多样。随着研究的不断推进,我们可以期待看到更多创新的plasmons应用,这可能会对我们的日常生活和技术格局产生重大影响。