agonist
简明释义
n. 收缩筋;兴奋剂
英英释义
单词用法
β-激动剂 | |
多巴胺激动剂 | |
激动剂与拮抗剂 | |
选择性激动剂 |
同义词
主角 | 在故事中,主角面临许多挑战。 | ||
竞争者 | 竞争者努力工作以赢得冠军。 | ||
对手 | 她在辩论中是一个强有力的对手。 | ||
激活剂 | 该药物作为受体的激活剂。 |
反义词
拮抗剂 | The antagonist in the story creates conflict for the protagonist. | 故事中的拮抗者为主角制造了冲突。 | |
抑制剂 | 抑制剂可以减缓或停止化学反应。 |
例句
1.Provided herein is a method of reversing or preventing a target cell's resistance to a death receptor agonist.
本文提供了反转或阻止靶细胞对死亡受体激动剂的抗性的方法。
2.If you could get a clever leptin agonist molecule then there is of course huge potential for the treatment.
如果我们能够研发出“更聪明的药物”,比如瘦素受体激动剂,那么它肯定有巨大的治疗潜力。
3.The medication, manufactured by Clinical Data Inc., is a combined serotonin reuptake inhibitor and 5ht1a agonist.
这些药物由“临床资料公司”(Clinical DataInc .)制造,是一个5 - HT再摄取抑制剂与5ht1a激动剂的化合物。
4.CONCLUSION Geniposide has the similar function as the agonist for GLP-1 receptor, including neurotrophic and neuroprotective effects.
结论京尼平苷具有与GLP - 1受体激动剂类似的神经营养和神经保护功能。
5.Greater leukocyte reaction is induced by agonist in patient with asthma.
哮喘病人外周血白细胞受激动剂作用会产生更大的细胞反应。
6.The enhanced effect of PCP was attenuated by atypical antipsychotics and glycine agonist, but not by the typical antipsychotics.
应用非典型性抗精神病药物和甘氨酸位点激动剂可以改善PCP诱导的不动增加,但典型性抗精神病药物无效。
7.AIM: to investigate the role of protease-activated receptor-2 (PAR-2) agonist in the formation and pathogenesis of stress ulcer.
目的:探讨大鼠蛋白酶激活受体- 2在应激性溃疡中的作用。
8.In pharmacology, a drug that activates a receptor to produce a biological response is known as an agonist.
在药理学中,激活受体以产生生物反应的药物被称为激动剂。
9.The use of beta-adrenergic agonists can help asthma patients by relaxing the muscles in the airways.
使用β-肾上腺素能激动剂可以通过放松气道中的肌肉来帮助哮喘患者。
10.In competitive sports, athletes may use performance-enhancing agonists to gain an advantage.
在竞技体育中,运动员可能会使用提高表现的激动剂来获得优势。
11.An agonist can mimic the effects of a neurotransmitter in the brain.
一个激动剂可以模拟大脑中神经递质的效果。
12.Some fitness supplements contain agonists that enhance muscle growth.
一些健身补充剂含有促进肌肉生长的激动剂。
作文
In the realm of biology and pharmacology, the term agonist refers to a substance that activates a receptor to produce a biological response. Understanding the role of agonists is crucial for both the development of new medications and the comprehension of how existing drugs work within the body. For instance, when a drug acts as an agonist, it binds to a specific receptor in the body and mimics the action of a naturally occurring substance, such as a hormone or neurotransmitter. This interaction can lead to various physiological effects, depending on the type of receptor and the location within the body. One of the most well-known examples of an agonist is morphine, which acts on opioid receptors in the brain. By binding to these receptors, morphine effectively reduces the perception of pain, making it a powerful analgesic. However, the same agonist can also lead to addiction and other serious side effects, highlighting the importance of understanding how agonists function at a molecular level. Moreover, agonists can be classified into different categories based on their activity. Full agonists activate receptors to produce a maximum response, while partial agonists only produce a partial response even when fully bound to the receptor. This distinction is significant in clinical settings, as partial agonists can sometimes be used to counteract the effects of full agonists, providing a therapeutic option with potentially fewer side effects. In addition to their applications in pain management, agonists play vital roles in various therapeutic areas, including cardiovascular health, respiratory function, and mental health. For example, beta-agonists are commonly used in the treatment of asthma; they relax the muscles of the airways, making it easier to breathe. On the other hand, dopamine agonists are used in the management of Parkinson's disease, helping to alleviate symptoms by stimulating dopamine receptors in the brain. The study of agonists extends beyond pharmacology into fields like exercise physiology, where certain hormones act as agonists to promote muscle growth and enhance performance. For example, testosterone is known to act as a potent agonist for muscle receptors, contributing to increased strength and endurance in athletes. This understanding has led to the exploration of agonist therapies in sports medicine, although ethical considerations regarding performance enhancement remain a contentious issue. In conclusion, the concept of agonist is multifaceted and plays a significant role across various disciplines. From pain relief to athletic performance, the implications of agonists are profound. As research continues to evolve, our understanding of agonists will undoubtedly deepen, paving the way for innovative treatments and enhancing our overall knowledge of human physiology. Recognizing the power of agonists in both natural and synthetic forms will help us appreciate the intricate balance of biochemical interactions that sustain life.
在生物学和药理学领域,术语激动剂指的是一种能够激活受体以产生生物反应的物质。理解激动剂的作用对新药的开发以及对现有药物在体内如何发挥作用的理解至关重要。例如,当一种药物作为激动剂时,它会与体内特定的受体结合,并模仿自然存在的物质(如激素或神经递质)的作用。这种相互作用可能导致各种生理效应,具体取决于受体的类型和在体内的位置。其中一个最著名的激动剂例子是吗啡,它作用于大脑中的阿片受体。通过与这些受体结合,吗啡有效地减少了疼痛的感知,使其成为一种强效的镇痛剂。然而,同样的激动剂也可能导致成瘾和其他严重的副作用,这突显了理解激动剂在分子水平上如何运作的重要性。此外,激动剂可以根据其活性被分类为不同的类别。完全激动剂激活受体以产生最大反应,而部分激动剂即使在完全结合受体时也只能产生部分反应。这种区别在临床环境中具有重要意义,因为部分激动剂有时可以用来对抗完全激动剂的效果,提供一种潜在副作用更少的治疗选择。除了在疼痛管理中的应用外,激动剂在心血管健康、呼吸功能和心理健康等多个治疗领域中也发挥着重要作用。例如,β-激动剂常用于哮喘的治疗;它们放松气道的肌肉,使呼吸变得更加容易。另一方面,多巴胺激动剂用于帕金森病的管理,通过刺激大脑中的多巴胺受体来帮助缓解症状。对激动剂的研究不仅限于药理学,还扩展到运动生理学等领域,在这些领域中,某些激素作为激动剂促进肌肉生长并增强表现。例如,睾酮被认为是肌肉受体的强效激动剂,有助于运动员的力量和耐力增加。这种理解促使在运动医学中探索激动剂疗法,尽管关于表现增强的伦理问题仍然是一个有争议的话题。总之,激动剂的概念是多方面的,在各个学科中发挥着重要作用。从疼痛缓解到运动表现,激动剂的影响深远。随着研究的不断发展,我们对激动剂的理解无疑将加深,为创新治疗铺平道路,并增强我们对人体生理学的整体认识。认识到自然和合成形式的激动剂的力量将帮助我们欣赏维持生命的生化相互作用的微妙平衡。