dynamical
简明释义
adj. 动力学的(等于 dynamic);有生气的;有力的
英英释义
Relating to the forces and motion of objects; involving change and activity. | 与物体的力和运动相关;涉及变化和活动。 |
以不断变化、活动或进步为特征。 |
单词用法
[数学]动力系统 | |
动力学方程;动态方程 |
同义词
动态的 | The dynamic nature of the market requires constant adaptation. | 市场的动态特性要求不断适应。 | |
运动的 | 动能是运动的能量。 | ||
有活力的 | 一种充满活力的方法可以带来更好的结果。 | ||
活跃的 | 鼓励积极参与讨论。 |
反义词
静态的 | 在停电期间,机器保持静态。 | ||
静止的 | 尽管有风,静止的物体没有移动。 |
例句
1.Thus, applying dynamical terms first learned in connection with visible things, we represent molecules as moving, bumping, bouncing.
原先只与可见物体相联系的动力学概念,像运动、碰撞、反弹等,现在也被应用于分子。
2.The sensitivity analysis of the stiffened plates has show way for the amending of dynamical optimize.
板梁组合结构模型敏感性分析为结构动力优化修改提供了依据。
3.Dynamical systems examples from mathematical biology and population dynamics.
来自生物数学和种群动力学的动力系统的例子。
4.In this paper, we mainly discuss the dynamical behavior of a discrete neural model.
本文主要分析了一类离散神经元模型的动力学行为。
5.Algebraic dynamical method is an effective method to deal with the dynamical evolution of such systems by making use of its algebraic structure.
代数动力学方法便是求解该系统的一种有效方法。该方法利用系统的代数结构使系统按照动力学规律随时间演化。
6.We develop a dynamical model to describe this process.
我们提出了一个动力学模型来描述这一过程。
7.A system dynamical mathematical model is established in theory, and an optimal performance pattern is fired.
从理论上建立了系统运行的动态数学模型,设定优化运行模式。
8.In economics, dynamical models help predict market trends over time.
在经济学中,动态模型有助于预测市场趋势随时间的变化。
9.The dynamical behavior of fluids is essential in designing efficient pipelines.
流体的动态行为在设计高效管道中至关重要。
10.The dynamical interactions between species can affect the entire ecosystem.
物种之间的动态互动可以影响整个生态系统。
11.The study of dynamical systems is crucial in understanding complex behaviors in physics.
研究动态系统对理解物理中的复杂行为至关重要。
12.Engineers use dynamical simulations to test vehicle performance under various conditions.
工程师使用动态模拟来测试车辆在不同条件下的性能。
作文
In the field of physics, the term dynamical (动力的) systems is used to describe systems that evolve over time according to specific rules. These systems can be found in various disciplines, including engineering, economics, and biology. Understanding dynamical (动力的) systems is crucial for predicting how these systems behave, which can lead to better decision-making in real-world applications. For instance, in engineering, dynamical (动力的) models are used to design stable structures that can withstand forces such as wind and earthquakes. By studying the dynamical (动力的) behavior of materials, engineers can ensure that buildings are not only functional but also safe.Moreover, in economics, dynamical (动力的) systems can help analyze market trends and consumer behavior. Economists often use dynamical (动力的) models to simulate how different factors, such as interest rates or government policies, can influence the economy over time. This helps policymakers make informed decisions that can stabilize or stimulate economic growth.Biology also benefits from the study of dynamical (动力的) systems, particularly in understanding population dynamics. Ecologists use dynamical (动力的) models to predict how populations of species change over time in response to environmental factors, competition, and predation. This information is vital for conservation efforts and managing ecosystems sustainably.The concept of dynamical (动力的) systems is not limited to scientific fields; it also applies to social sciences. For example, sociologists might examine the dynamical (动力的) interactions within communities and how these interactions evolve over time. By analyzing social networks and group behaviors, researchers can gain insights into societal changes and the factors that drive them.In addition to its applications, the study of dynamical (动力的) systems involves various mathematical techniques and tools. Differential equations, for instance, are often used to model the relationships between different variables in a dynamical (动力的) system. These equations help researchers understand how changes in one part of the system can affect other parts, allowing for a comprehensive analysis of the entire system.Furthermore, the exploration of dynamical (动力的) systems has led to the development of new technologies. For example, control theory, which is rooted in the study of dynamical (动力的) systems, has paved the way for advancements in robotics and automation. By applying dynamical (动力的) principles, engineers can create robots that can adapt to changing environments and perform complex tasks with precision.In conclusion, the concept of dynamical (动力的) systems is a fundamental aspect of many scientific and social disciplines. Its relevance spans across various fields, providing valuable insights that enhance our understanding of complex phenomena. Whether it is in predicting the stability of structures, analyzing economic trends, or understanding ecological interactions, the study of dynamical (动力的) systems is essential for advancing knowledge and improving our world. As we continue to explore these systems, we unlock new possibilities for innovation and problem-solving in an ever-changing environment.
在物理学领域,术语dynamical(动力的)系统用于描述根据特定规则随时间演变的系统。这些系统可以在多个学科中找到,包括工程学、经济学和生物学。理解dynamical(动力的)系统对于预测这些系统的行为至关重要,这可以导致在实际应用中做出更好的决策。例如,在工程学中,dynamical(动力的)模型用于设计能够承受风和地震等力量的稳定结构。通过研究材料的dynamical(动力的)行为,工程师可以确保建筑不仅功能齐全,而且安全。此外,在经济学中,dynamical(动力的)系统可以帮助分析市场趋势和消费者行为。经济学家通常使用dynamical(动力的)模型来模拟不同因素(如利率或政府政策)如何影响经济随时间的变化。这有助于决策者做出明智的决策,以稳定或刺激经济增长。生物学也受益于对dynamical(动力的)系统的研究,特别是在理解种群动态方面。生态学家使用dynamical(动力的)模型来预测物种种群如何随环境因素、竞争和捕食的变化而变化。这些信息对于保护工作和可持续管理生态系统至关重要。dynamical(动力的)系统的概念不仅限于科学领域;它也适用于社会科学。例如,社会学家可能会研究社区内部的dynamical(动力的)互动以及这些互动如何随时间演变。通过分析社会网络和群体行为,研究人员可以深入了解社会变化及其驱动因素。除了其应用外,dynamical(动力的)系统的研究涉及各种数学技术和工具。例如,微分方程通常用于建模dynamical(动力的)系统中不同变量之间的关系。这些方程帮助研究人员理解系统中一个部分的变化如何影响其他部分,从而允许对整个系统进行全面分析。此外,对dynamical(动力的)系统的探索导致了新技术的发展。例如,控制理论根植于对dynamical(动力的)系统的研究,为机器人技术和自动化的进步铺平了道路。通过应用dynamical(动力的)原理,工程师可以创建能够适应变化环境并精确执行复杂任务的机器人。总之,dynamical(动力的)系统的概念是许多科学和社会学科的基本方面。它的相关性跨越多个领域,提供了宝贵的见解,增强了我们对复杂现象的理解。无论是在预测结构的稳定性、分析经济趋势还是理解生态互动方面,对dynamical(动力的)系统的研究对推动知识进步和改善我们的世界至关重要。随着我们继续探索这些系统,我们为在不断变化的环境中创新和解决问题开启了新的可能性。