muon
简明释义
n. [高能] μ介子
n. (Muon)人名;(老)孟
英英释义
单词用法
μ子探测 | |
μ子束 | |
μ子对产生 | |
μ子中微子 |
同义词
轻子 | The muon is a type of lepton that is heavier than an electron. | μ子是一种比电子重的轻子。 | |
粒子 | In particle physics, a muon is an essential component of the Standard Model. | 在粒子物理学中,μ子是标准模型的重要组成部分。 |
反义词
例句
1.Going this deep would help reduce the background signals from cosmic ray muon particles.
在这样的深度(实验)将有助于减少宇宙射线中的渺子介子造成的背景信号。
2.A discovery that neutrinos, virtually massless particles, convert into other forms known as muon and tau before they leave the sun, solving a 40-year-old mystery.
发现中微子(几乎是无质量的粒子)在离开太阳之前可转化介子,解开了一个40年的谜。
3.The point is to see if they are still muon-neutrinos when they arrive at Super-Kamiokande.
T2K实验的目的是看当它们到达超级神冈探测器的时候,是否仍然是缪子中微子。
4.However, in muonic hydrogen the Lamb shift is much more dependent on the proton radius because the much heavier muon spends more time very near to – and often within – the proton itself.
无论如何,μ介子氢的兰姆位移更加依赖于质子的半径,因为相对电子更加重的μ介子靠近或者时不时进入质子本身的时间也更多。
5.Then there are neutrinos, W and Z bosons, the electron-like muon and tau particles, and gluons—which hold quarks together in groups.
然后还有中微子,W和Z波色子,类电子的μ粒子和τ粒子,还有胶子——它的作用是将夸克聚合成团。
6.Neutrinos are known to switch back and forth between their three observed types (electron, muon and tau neutrinos), and OPERA was originally designed to detect these shifts.
中微子可以在我们所知的3个已经观察到的类型(电子,μ介子和τ中微子)之间来回切换,OPERA最初的设计是用来检测这些切换的。
7.When it arrives, some of the muon neutrinos in it will have transformed themselves into electron neutrinos.
当它到达时,射线中的某些介子中微子会转变成电子中微子。
8.However, in muonic hydrogen the Lamb shift is much more dependent on the proton radius because the much heavier muon spends more time very near to – and often within – the proton itself.
无论如何,μ介子氢的兰姆位移更加依赖于质子的半径,因为相对电子更加重的μ介子靠近或者时不时进入质子本身的时间也更多。
9.Several experimental results on solar neutrino missing and on atmospheric muon neutrino missing are described.
这些结果表明存在中微子振荡,即中微子具有质量。
10.The discovery of the muon 缪子 was a significant milestone in particle physics.
缪子的发现是粒子物理学的一个重要里程碑。
11.A muon 缪子 is similar to an electron but has a much greater mass.
缪子与电子相似,但质量大得多。
12.Scientists use muons 缪子 to study cosmic rays and their interactions with the atmosphere.
科学家利用缪子研究宇宙射线及其与大气的相互作用。
13.When a muon 缪子 travels through matter, it can create a shower of secondary particles.
当缪子穿过物质时,它可以产生一系列次级粒子。
14.In particle accelerators, muons 缪子 are used to probe the structure of matter at high energies.
在粒子加速器中,缪子被用来探测高能下物质的结构。
作文
In the realm of particle physics, the concept of the muon is both fascinating and essential. A muon is an elementary particle similar to an electron, with an electric charge of -1 e, but it is approximately 200 times more massive than an electron. This unique characteristic makes the muon an intriguing subject of study for physicists around the world. Understanding muons not only helps us delve deeper into the fundamental structure of matter but also opens doors to new theories about the universe's workings.The discovery of the muon dates back to 1936 when Carl D. Anderson and Seth Neddermeyer first observed this particle in cosmic rays. Their work provided crucial evidence that there are more particles in nature than just protons, neutrons, and electrons. The muon is classified as a lepton, which is a category of subatomic particles that do not undergo strong interactions. Instead, muons interact through electromagnetic and weak forces, making them a vital component of the Standard Model of particle physics.One of the most compelling aspects of the muon is its relatively short lifespan. A free muon has a mean lifetime of about 2.2 microseconds before it decays into an electron and two types of neutrinos. This decay process is a subject of intense study, as it provides insights into the behavior of fundamental particles and the forces that govern their interactions. The muon's fleeting existence challenges researchers to develop advanced detection techniques and experimental setups to observe its properties and interactions.Moreover, muons play a significant role in the field of particle accelerators. Facilities like CERN's Large Hadron Collider (LHC) utilize high-energy collisions to produce muons alongside other particles. By studying the products of these collisions, scientists can test predictions made by the Standard Model and search for new physics phenomena that could explain unresolved questions in the universe, such as dark matter and the asymmetry between matter and antimatter.Additionally, muons have practical applications beyond theoretical physics. For instance, they are used in muon tomography, a technique that employs muons to image the interior of large structures, such as volcanoes or pyramids. Since muons can penetrate materials much more effectively than X-rays, this method offers a non-invasive way to explore hidden features within these structures.In conclusion, the muon is a pivotal particle in the study of physics, bridging the gap between theoretical concepts and practical applications. Its unique properties and behaviors not only enhance our understanding of the universe's fundamental building blocks but also pave the way for innovative technologies. As research continues to advance, the muon will undoubtedly remain a key focus in the quest to unravel the mysteries of the cosmos.
在粒子物理学的领域中,μ子的概念既迷人又至关重要。μ子是一种与电子相似的基本粒子,带有-1 e的电荷,但其质量约为电子的200倍。这一独特特性使得μ子成为全球物理学家研究的一个有趣主题。理解μ子不仅有助于我们更深入地探讨物质的基本结构,还为我们打开了关于宇宙运作的新理论之门。μ子的发现可以追溯到1936年,当时卡尔·D·安德森和塞思·内德梅耶首次在宇宙射线中观察到了这种粒子。他们的工作提供了重要证据,表明自然界中存在的不仅仅是质子、中子和电子。μ子被归类为轻子,这是一类不经历强相互作用的亚原子粒子。相反,μ子通过电磁和弱力进行相互作用,使其成为粒子物理标准模型中的重要组成部分。μ子最引人注目的方面之一是它相对较短的寿命。自由μ子的平均寿命约为2.2微秒,然后衰变为一个电子和两种类型的中微子。这一衰变过程是研究的重点,因为它提供了对基本粒子的行为及其相互作用所支配的力量的洞察。μ子短暂的存在挑战着研究人员开发先进的检测技术和实验设置,以观察其特性和相互作用。此外,μ子在粒子加速器领域也发挥着重要作用。像欧洲核子研究中心(CERN)的“大强子对撞机”(LHC)这样的设施利用高能碰撞产生μ子以及其他粒子。通过研究这些碰撞的产物,科学家们可以测试标准模型的预测,并寻找新的物理现象,以解释宇宙中未解的问题,例如暗物质和物质与反物质之间的非对称性。此外,μ子在理论物理之外还有实际应用。例如,它们用于μ子断层成像,这是一种利用μ子成像大型结构内部的技术,如火山或金字塔。由于μ子能够比X射线更有效地穿透材料,这种方法提供了一种无损方式来探索这些结构内的隐藏特征。总之,μ子是物理学研究中的一个关键粒子,架起了理论概念与实际应用之间的桥梁。它独特的特性和行为不仅增强了我们对宇宙基本构建块的理解,而且为创新技术铺平了道路。随着研究的不断推进,μ子无疑将继续成为揭开宇宙奥秘的关键焦点。