bremsstrahlung

简明释义

[ˈbremzˌʃtrɑːləŋ][ˈbremˌʃtrɑːləŋ]

n. 轫致辐射

英英释义

Bremsstrahlung is a German term that refers to the radiation produced when charged particles, such as electrons, are accelerated or decelerated, typically in the vicinity of atomic nuclei.

Bremsstrahlung是一个德语术语,指的是当带电粒子(如电子)在原子核附近加速或减速时产生的辐射。

单词用法

x-ray bremsstrahlung

X射线制动辐射

bremsstrahlung losses

制动损失

bremsstrahlung spectrum

制动光谱

calculate bremsstrahlung

计算制动辐射

observe bremsstrahlung

观察制动辐射

measure bremsstrahlung

测量制动辐射

同义词

braking radiation

制动辐射

Bremsstrahlung is a significant source of X-rays in medical imaging.

制动辐射是医学成像中X射线的重要来源。

deceleration radiation

减速辐射

The phenomenon of braking radiation occurs when charged particles are decelerated.

当带电粒子减速时,会发生制动辐射现象。

反义词

acceleration radiation

加速辐射

In particle accelerators, acceleration radiation can be a significant source of energy loss.

在粒子加速器中,加速辐射可能是一个重要的能量损失来源。

stimulated emission

受激发射

Stimulated emission is the principle behind laser operation.

受激发射是激光工作原理的基础。

例句

1.The current loss in magnetically insulated transmission line (MITL) on pulsed power installation "S-300" is studied by measuring bremsstrahlung between the electrodes, current and voltage in the load.

在装置“S- 300”上,通过测量真空磁绝缘传输线中电极间电子流轫致辐射和负载上的电流、电压等参数,研究了磁绝缘传输线中的电流损失特性。

2.The current loss in magnetically insulated transmission line (MITL) on pulsed power installation "S-300" is studied by measuring bremsstrahlung between the electrodes, current and voltage in the load.

在装置“S- 300”上,通过测量真空磁绝缘传输线中电极间电子流轫致辐射和负载上的电流、电压等参数,研究了磁绝缘传输线中的电流损失特性。

3.Using a multichannel quartz optical-fiber system calibrated with a standard tungsten strip lamp, the radial profiles of the visible bremsstrahlung radiation power in the HL-1 tokamak were measured.

采用经钨带灯标准光源标定的多道石英光纤光学系统,测量了HL-1装置等离子体可见光波段轫致辐射功率的径向分布。

4.The distributions of corresponding bremsstrahlung energy losses have also been calculated approximately.

并对相应的轫致辐射能损分布作了近似计算。

5.The gravitational energy of electrons transforms into radiation in burst phase through bremsstrahlung of electrons.

电子的引力能通过电子的轫致辐射转化为爆发相的辐射能。

6.In the design of industrial ct, the knowledge of energy and flux distributions for bremsstrahlung photons through crystals is necessary to select scintillator's type and dimension.

在工业CT设计中,为了选择闪烁体的种类和几何尺寸,需要知道韧致辐射光子穿透闪烁体的能量和通量分布。

7.The efficiency of a synchrotron light source is often limited by bremsstrahlung losses.

同步辐射光源的效率常常受到bremsstrahlung损失的限制。

8.The bremsstrahlung effect can significantly impact the energy distribution of emitted photons.

bremsstrahlung效应可以显著影响发射光子的能量分布。

9.In particle physics, bremsstrahlung refers to the radiation emitted when charged particles are accelerated.

在粒子物理学中,bremsstrahlung指的是带电粒子加速时发出的辐射。

10.The concept of bremsstrahlung is essential in understanding how X-rays are produced in medical imaging.

理解bremsstrahlung的概念对于了解医学成像中X射线的产生至关重要。

11.Researchers study bremsstrahlung to improve radiation shielding in nuclear reactors.

研究人员研究bremsstrahlung以改善核反应堆中的辐射屏蔽。

作文

In the realm of physics, particularly in the study of electromagnetism and quantum mechanics, the term bremsstrahlung plays a significant role. The word itself is derived from German, meaning 'braking radiation.' This phenomenon occurs when charged particles, such as electrons, are decelerated or deflected by the electric fields of atomic nuclei. As these particles lose energy during this process, they emit radiation, which is what we refer to as bremsstrahlung.

Understanding bremsstrahlung is crucial, especially in fields like astrophysics and medical imaging. For instance, in astrophysics, high-energy electrons that travel through the intense gravitational fields of stars can produce bremsstrahlung radiation. This radiation is not only a byproduct of their interactions but also serves as a valuable tool for astronomers to study cosmic phenomena. By analyzing the spectrum of bremsstrahlung, scientists can glean insights into the composition and behavior of celestial bodies.

In medical imaging, particularly in X-ray technology, bremsstrahlung is an essential concept. When high-speed electrons collide with a metal target, such as tungsten, they are rapidly decelerated, resulting in the emission of X-rays through bremsstrahlung. This process is fundamental to the generation of X-ray images, which are indispensable in diagnosing various health conditions. The efficiency and quality of X-ray production can be significantly influenced by understanding the principles of bremsstrahlung, allowing for advancements in imaging techniques and equipment.

Moreover, bremsstrahlung has implications in particle physics and radiation therapy. In particle accelerators, when charged particles are accelerated to high velocities and subsequently interact with matter, bremsstrahlung radiation is emitted. This radiation can pose challenges in controlling the energy output and ensuring the safety of experiments. Additionally, in radiation therapy for cancer treatment, the knowledge of bremsstrahlung helps in optimizing radiation doses to effectively target tumors while minimizing damage to surrounding healthy tissues.

Despite its importance, bremsstrahlung can also present challenges, particularly in terms of radiation safety and environmental concerns. The emission of bremsstrahlung radiation can lead to unwanted exposure for both patients and medical personnel. Therefore, it is vital to implement safety measures and regulations to mitigate these risks. Understanding the mechanisms behind bremsstrahlung allows researchers and practitioners to develop better shielding techniques and protocols to protect individuals from excessive radiation exposure.

In conclusion, the term bremsstrahlung encapsulates a fundamental process in the interaction of charged particles with matter, leading to the emission of radiation. Its applications span across various fields, including astrophysics, medical imaging, and particle physics. By comprehensively understanding bremsstrahlung, we can leverage its principles to advance technology, improve safety standards, and enhance our understanding of the universe. As research continues to evolve, the significance of bremsstrahlung will undoubtedly remain at the forefront of scientific inquiry, shedding light on both the micro and macro aspects of our world.

在物理学的领域,尤其是在电磁学和量子力学的研究中,术语bremsstrahlung扮演着重要角色。这个词本身源自德语,意为“制动辐射”。这一现象发生在带电粒子(如电子)被原子核的电场减速或偏转时。当这些粒子在此过程中失去能量时,它们会发出辐射,这就是我们所称的bremsstrahlung

理解bremsstrahlung至关重要,特别是在天体物理学和医学成像等领域。例如,在天体物理学中,高能电子穿过恒星的强引力场时,可以产生bremsstrahlung辐射。这种辐射不仅是它们相互作用的副产品,也是天文学家研究宇宙现象的重要工具。通过分析bremsstrahlung的光谱,科学家可以获得关于天体组成和行为的见解。

在医学成像中,特别是在X射线技术中,bremsstrahlung是一个基本概念。当高速电子与金属靶(如钨)碰撞时,它们会迅速减速,从而通过bremsstrahlung发出X射线。这个过程是生成X射线图像的基础,而X射线图像在诊断各种健康状况中不可或缺。对bremsstrahlung原理的理解可以显著影响X射线生产的效率和质量,从而推动成像技术和设备的进步。

此外,bremsstrahlung在粒子物理学和放射治疗中也有影响。在粒子加速器中,当带电粒子被加速到高速度并随后与物质相互作用时,会发出bremsstrahlung辐射。这种辐射可能在控制能量输出和确保实验安全方面带来挑战。此外,在癌症治疗的放射治疗中,对bremsstrahlung的知识有助于优化辐射剂量,以有效针对肿瘤,同时尽量减少对周围健康组织的损害。

尽管bremsstrahlung的重要性显而易见,但它也可能带来挑战,特别是在辐射安全和环境问题方面。bremsstrahlung辐射的发射可能导致患者和医务人员的意外暴露。因此,实施安全措施和法规以减轻这些风险至关重要。理解bremsstrahlung背后的机制使研究人员和从业者能够开发更好的屏蔽技术和协议,以保护个人免受过量辐射暴露。

总之,术语bremsstrahlung概括了带电粒子与物质相互作用的基本过程,导致辐射的发射。它的应用跨越多个领域,包括天体物理学、医学成像和粒子物理学。通过全面理解bremsstrahlung,我们可以利用其原理推动技术进步、改善安全标准,并增强对宇宙的理解。随着研究的不断发展,bremsstrahlung的重要性无疑将继续处于科学探究的前沿,照亮我们世界的微观和宏观方面。