undecimal

简明释义

[ˌʌnˈdɛsɪməl][ˌʌnˈdɛsɪməl]

adj. 十一进制的

英英释义

Relating to a numeral system based on eleven, where numbers are represented using eleven distinct digits.

与基于十一的数字系统相关,其中数字使用十一种不同的数字表示。

单词用法

undecimal base

非十进制基数

undecimal representation

非十进制表示法

convert to undecimal

转换为非十进制

undecimal notation

非十进制记法

同义词

non-decimal

非十进制的

The binary system is a non-decimal numeral system.

二进制系统是一种非十进制数字系统。

base-n

n进制的

In computer science, base-n systems are often used for data representation.

在计算机科学中,n进制系统常用于数据表示。

反义词

decimal

十进制

In a decimal system, the number 10 represents ten units.

在十进制系统中,数字10表示十个单位。

binary

二进制

Binary code is used in computing and represents data using two symbols: 0 and 1.

二进制代码用于计算机中,用两个符号表示数据:0和1。

例句

1.With its decidedly undecimal sidereal year of 365-and-a-quarter days, that is just not going to happen.

这种事不会发生,因为“恒星年(由365又1/4天所组成)是十一进制的”这一事实是确凿无疑的。

2.Unfortunately, here on planet Earth, with its decidedly undecimal sidereal year of 365-and-a-quarter days, that is just not going to happen.

但是不巧的是,在地球这个行星星球上,这种事不会发生,因为“恒星年(由365又1/4天所组成)是非十进制的”这一事实是确凿无差的。

3.Unfortunately, here on planet Earth, with its decidedly undecimal sidereal year of 365-and-a-quarter days, that is just not going to happen.

但是不巧的是,在地球这个行星星球上,这种事不会发生,因为“恒星年(由365又1/4天所组成)是非十进制的”这一事实是确凿无差的。

4.An undecimal representation can be more compact than decimal in some cases.

在某些情况下,undecimal表示法可能比十进制更紧凑。

5.When converting from decimal to undecimal, you need to divide by 11.

将十进制转换为undecimal时,需要用11进行除法运算。

6.In an undecimal system, the digits range from 0 to A.

undecimal系统中,数字范围从0到A。

7.The concept of undecimal can be useful in certain mathematical problems.

在某些数学问题中,undecimal的概念可能会很有用。

8.The term undecimal refers to a base-11 numbering system.

术语undecimal指的是一种以11为基数的数字系统。

作文

In the realm of mathematics, we often encounter various numeral systems that help us understand and manipulate numbers in different ways. One such system that is not commonly discussed is the base-11 system, also known as undecimal. The term undecimal refers to a numeral system that uses eleven as its base, which means it employs eleven distinct digits to represent values. These digits typically include the numbers 0 through 9, along with an additional symbol to represent ten. This unique system provides a fascinating perspective on how we can interpret numbers beyond the familiar decimal system, which is base-10.Understanding the concept of undecimal is essential for mathematicians and computer scientists who work with different bases. It allows them to explore the properties of numbers in a broader context. For instance, while most people are accustomed to counting in base-10, the undecimal system introduces the idea of counting in a system that has one more digit than our standard system. This can lead to interesting mathematical patterns and relationships that might not be immediately apparent in base-10.In practical applications, the undecimal system might not be as widely used as binary (base-2), octal (base-8), or hexadecimal (base-16) systems. However, it serves as a valuable educational tool for those seeking to deepen their understanding of number theory and numeral systems. By learning about undecimal, students can enhance their problem-solving skills and develop a more comprehensive understanding of how numbers function across different bases.Moreover, the exploration of undecimal can stimulate curiosity and encourage critical thinking. When students are exposed to various numeral systems, they begin to appreciate the beauty and complexity of mathematics. They learn that numbers are not just abstract symbols but rather tools that can be manipulated in numerous ways. This realization can inspire a love for mathematics that extends beyond the classroom and into real-world applications.In conclusion, the undecimal system, while not commonly encountered, offers a rich field of study for those interested in mathematics. It challenges our conventional understanding of numbers and encourages us to think outside the box. By embracing different numeral systems like undecimal, we can cultivate a deeper appreciation for the intricacies of mathematics, fostering a mindset that values exploration and discovery. As we continue to engage with diverse mathematical concepts, we not only enhance our knowledge but also prepare ourselves for a future where innovative thinking is paramount. Thus, the study of undecimal and other numeral systems is not just an academic exercise; it is a gateway to understanding the vast landscape of mathematics that surrounds us.

在数学领域,我们常常会遇到各种数字系统,这些系统帮助我们以不同的方式理解和操作数字。其中一个不常讨论的系统是基于11的系统,也称为undecimal。术语undecimal指的是一种以11为基数的数字系统,这意味着它使用11个不同的数字来表示值。这些数字通常包括0到9的数字,以及一个额外的符号来表示10。这个独特的系统提供了一个迷人的视角,让我们能够超越熟悉的十进制系统来解释数字。理解undecimal的概念对从事不同基数工作的数学家和计算机科学家至关重要。它使他们能够在更广泛的背景下探索数字的性质。例如,虽然大多数人习惯于以10为基数进行计数,但undecimal系统引入了在拥有比我们标准系统多一个数字的系统中计数的概念。这可能导致一些有趣的数学模式和关系,而这些在10进制中可能并不明显。在实际应用中,undecimal系统可能没有像二进制(基数2)、八进制(基数8)或十六进制(基数16)系统那样广泛使用。然而,它作为一种宝贵的教育工具,对于那些希望深入理解数字理论和数字系统的人来说非常重要。通过学习undecimal,学生们可以增强他们的问题解决能力,并对数字在不同基数下的运作有更全面的理解。此外,探索undecimal可以激发好奇心并鼓励批判性思维。当学生接触到各种数字系统时,他们开始欣赏数学的美丽和复杂性。他们了解到,数字不仅仅是抽象的符号,而是可以以多种方式操纵的工具。这一认识可以激发对数学的热爱,这种热爱超越课堂,延伸到现实世界的应用中。总之,undecimal系统虽然不常见,但为那些对数学感兴趣的人提供了丰富的研究领域。它挑战了我们对数字的传统理解,鼓励我们跳出框架思考。通过接受像undecimal这样的不同数字系统,我们可以培养对数学复杂性的更深刻的欣赏,培养一种重视探索和发现的思维方式。随着我们继续与各种数学概念互动,我们不仅增强了知识,还为未来创新思维至关重要的时代做好准备。因此,研究undecimal和其他数字系统不仅仅是学术练习;它是理解我们周围的广阔数学领域的一扇大门。