paraxial

简明释义

[pæˈræksiəl][ˌpærəˈæksɪl]

adj. 旁轴的;近轴的

英英释义

Relating to or situated near the axis of a system, particularly in optics where it refers to rays that are close to the optical axis.

与系统的轴线相关或位于其附近,特别是在光学中,指的是靠近光轴的光线。

单词用法

paraxial approximation

旁轴近似

paraxial ray

旁轴光线

paraxial optics

旁轴光学

paraxial wavefront

旁轴波前

同义词

axial

轴向的

The axial position of the lens is crucial for proper focusing.

透镜的轴向位置对正确对焦至关重要。

peripheral

周边的

In peripheral vision, objects are seen outside of the direct line of sight.

在周边视觉中,物体在视线的直接范围之外被看到。

central

中心的

Central processing is essential for effective data analysis.

中心处理对有效的数据分析至关重要。

反义词

axial

轴向的

The axial direction is critical in determining the properties of the system.

轴向方向在确定系统属性时至关重要。

non-paraxial

非近轴的

Non-paraxial optics takes into account rays that are not close to the optical axis.

非近轴光学考虑了那些不靠近光轴的光线。

例句

1.From the analogy between pulses propagation in time and the paraxial optics, the nonlinear Kerr media is approached by a time quadratic index media.

从空域与时域的相似性出发,把克尔介质近似为时域二次折射率介质,从而得到了脉冲在该介质中的解析形式,并给出了相应的时域传输矩。

2.The condition has been discussed, under which SG beams preserve their shape and order, while passing through paraxial optical systems.

还研究了超高斯光束通过近轴光学系统时,保持其形状和阶数不变的条件。

3.Layered soils and elastic half-space were simulated by thin layer elements with quadratic shape function and paraxial boundary respectively.

采用二次形函数薄层单元和傍轴边界分别模拟弹性半空间上的层状场地和半空间。

4.The simple linear relationship between off-axis distance and delay time was also derived in the case of paraxial and remote transmission.

在近轴、远距离传输情况下的离轴距离与延迟时问成简单的线性关系。

5.Numerical computations show that paraxial approximation gives almost the same accuracy in the paraxial region as complex ray method but spends much less computer time.

所得数字结果表明,在波束的近轴区域内为获得同样的计算精度,近轴近似法所需要的计算机时间远小于复射线追综法的时间。

6.The ray propagating and paraxial imaging characteristics of a GRIN fiber lens with constant refractive-index surfaces of revolution paraboloids are studied.

本文研究一种等折射率面为旋转抛物面的梯度折射率纤维的光线传播和近轴成像特性。

7.Using paraxial 近轴的 approximations can lead to significant simplifications in calculations.

使用 paraxial 近轴的 近似可以在计算中带来显著的简化。

8.When discussing paraxial 近轴的 rays, we assume that the angles are small.

在讨论 paraxial 近轴的 光线时,我们假设角度很小。

9.The paraxial 近轴的 region of a lens is where most light rays converge.

透镜的 paraxial 近轴的 区域是大多数光线汇聚的地方。

10.In optics, the paraxial 近轴的 approximation simplifies the analysis of lens systems.

在光学中,paraxial 近轴的 近似法简化了透镜系统的分析。

11.The paraxial 近轴的 ray tracing technique is commonly used in designing optical instruments.

在设计光学仪器时,通常使用 paraxial 近轴的 光线追踪技术。

作文

In the study of optics, understanding the concept of paraxial rays is crucial for analyzing how light behaves when it interacts with lenses and mirrors. The term paraxial refers to rays that are close to the optical axis of a lens or mirror, which allows for simplifications in calculations and theoretical models. This concept is foundational in both geometrical optics and physical optics, as it provides a way to predict the behavior of light with greater accuracy when certain conditions are met.When light rays travel through a lens, those that are considered paraxial make small angles with the optical axis. This characteristic is significant because it permits the use of approximations in the mathematics that describe light propagation. For instance, in the paraxial approximation, the sine of the angle can be substituted with the angle itself when measured in radians. This simplification leads to more manageable equations, making it easier to design optical systems such as cameras, microscopes, and telescopes.The importance of paraxial rays extends beyond theoretical studies; it has practical implications in engineering and technology. Optical engineers often rely on paraxial approximations when designing lenses to ensure that they function effectively for most applications. By focusing on paraxial rays, engineers can create systems that minimize aberrations, which are distortions that occur when light rays deviate from their intended paths. These aberrations can severely impact the quality of images produced by optical devices.Moreover, the paraxial approximation is not limited to just simple lenses; it also plays a role in complex optical setups, including multi-element lens systems. In these systems, understanding how each component interacts with paraxial rays helps engineers optimize the overall performance of the device. This optimization is critical in fields such as photography, where achieving sharp images is paramount.In addition to its applications in optics, the notion of paraxial can also be found in other fields, such as physics and engineering, where similar principles apply. For example, in mechanics, the concept of paraxial can relate to the behavior of particles moving in a field where their trajectories are close to a central axis. This analogy highlights how the principles of paraxial behavior can transcend specific domains, providing a unified framework for understanding various phenomena.In conclusion, the term paraxial is integral to the study of optics and serves as a bridge between theoretical concepts and practical applications. By focusing on rays that are near the optical axis, scientists and engineers can simplify complex problems and develop more effective optical systems. As technology continues to advance, the relevance of paraxial concepts will likely persist, driving innovation in optics and related fields. Understanding this term not only enhances our grasp of optical principles but also equips us with the tools necessary for future developments in science and technology.

在光学研究中,理解paraxial光线的概念对于分析光与透镜和镜子相互作用时的行为至关重要。术语paraxial指的是那些靠近透镜或镜子的光轴的光线,这使得在计算和理论模型中可以进行简化。这个概念在几何光学和物理光学中是基础性的,因为它提供了一种在满足特定条件时更准确地预测光行为的方法。当光线穿过透镜时,那些被认为是paraxial的光线与光轴形成小角度。这一特征非常重要,因为它允许在描述光传播的数学中使用近似。例如,在paraxial近似中,角度的正弦值可以用以弧度计量的角度本身来替代。这一简化导致了更易于处理的方程,使得设计光学系统(如相机、显微镜和望远镜)变得更加容易。paraxial光线的重要性不仅限于理论研究;它在工程和技术中具有实际意义。光学工程师常常依赖paraxial近似来设计透镜,以确保它们在大多数应用中有效。通过关注paraxial光线,工程师可以创建最小化像差的系统,而像差是光线偏离预期路径时发生的失真。这些像差会严重影响光学设备所产生图像的质量。此外,paraxial近似不仅限于简单透镜;它在复杂的光学装置中也发挥着作用,包括多元件透镜系统。在这些系统中,理解每个组件如何与paraxial光线相互作用有助于工程师优化设备的整体性能。这种优化在摄影等领域至关重要,因为实现清晰的图像是首要任务。除了在光学中的应用,paraxial的概念还可以在其他领域找到,例如物理学和工程学,其中类似的原则适用。例如,在力学中,paraxial的概念可以与在场中运动的粒子的行为相关联,这些粒子的轨迹靠近中心轴。这一类比突显了paraxial行为的原则如何超越特定领域,为理解各种现象提供统一的框架。总之,术语paraxial是光学研究中不可或缺的一部分,它在理论概念与实际应用之间架起了一座桥梁。通过关注靠近光轴的光线,科学家和工程师可以简化复杂问题并开发出更有效的光学系统。随着技术的不断进步,paraxial概念的相关性可能会持续存在,推动光学及相关领域的创新。理解这个术语不仅增强了我们对光学原理的掌握,还为我们未来在科学和技术发展中提供了必要的工具。