magneton
简明释义
n. 磁子
英英释义
A magneton is a unit of magnetic moment that is used in the field of physics to quantify the magnetic properties of particles, atoms, or molecules. | 磁子是一个磁矩单位,用于物理学领域量化粒子、原子或分子的磁性特性。 |
单词用法
玻尔磁子 | |
核磁子 | |
电子磁子 | |
以磁子为单位测量 | |
以磁子的形式表示 |
同义词
反义词
例句
1.The fields clash and divert the magneton flow temporarily if they cannot merge in an alignment.
如果两个磁场不能够合并成一个队列,磁场会互相冲突并发生磁子流暂时转移。
2.The gelation time is determined by a revolving magneton method and the gel strength-through breakthrough vacuum measurements.
成冻时间和冻胶强度分别由转子旋转法和突破真空度法测定。
3.The gelation time is determined by a revolving magneton method and the gel strength-through breakthrough vacuum measurements.
成冻时间和冻胶强度分别由转子旋转法和突破真空度法测定。
4.When the photon acts as the medium of magnetic field, it is called photonic magneton.
光子作为磁场的介质时,称为光磁子。
5.The team measured the magneton 磁子 to determine the strength of the magnetic field.
团队测量了magneton 磁子以确定磁场的强度。
6.In quantum mechanics, the concept of a magneton 磁子 is essential for understanding magnetic properties.
在量子力学中,magneton 磁子的概念对理解磁性特性至关重要。
7.The physicist explained that a single magneton 磁子 can represent the magnetic moment of an electron.
物理学家解释说,单个magneton 磁子可以表示电子的磁矩。
8.A magneton 磁子 can be defined as a unit of magnetic moment.
magneton 磁子可以定义为一个磁矩单位。
9.The magneton 磁子 is often used in calculations involving ferromagnetic materials.
在涉及铁磁材料的计算中,magneton 磁子通常被使用。
作文
In the realm of physics, particularly in the study of magnetism, one often encounters the term magneton. A magneton is a fundamental unit that measures the magnetic moment of elementary particles, atoms, or molecules. The concept of the magneton is crucial for understanding how various materials respond to magnetic fields. It provides a way to quantify the strength and orientation of a magnetic field produced by a particle or a collection of particles. The most common type of magneton is the Bohr magneton, named after the famous physicist Niels Bohr. The Bohr magneton is defined as the magnetic moment of an electron orbiting around a nucleus. This unit is essential when discussing the magnetic properties of atoms and is often used in quantum mechanics to describe the behavior of electrons in magnetic fields. Another important type of magneton is the nuclear magneton, which is used to describe the magnetic moment of nucleons (protons and neutrons) in the nucleus of an atom. The nuclear magneton is significantly smaller than the Bohr magneton because it takes into account the mass difference between electrons and nucleons. This distinction is vital for physicists when they analyze the magnetic properties of atomic nuclei, especially in the context of nuclear magnetic resonance (NMR) and other related technologies. Understanding the concept of magneton is not only limited to theoretical physics; it has practical applications as well. For instance, in the field of material science, the magnetic properties of materials are often characterized using the concept of magneton. By measuring the magnetic moments of different materials, scientists can determine whether a material is ferromagnetic, paramagnetic, or diamagnetic. These properties are crucial for developing new materials for various applications, including electronics, data storage, and medical imaging technologies. Moreover, the study of magneton has implications in the field of astrophysics. Astrophysicists often examine the magnetic fields of celestial bodies and their interactions with cosmic radiation. Understanding the magnetic moments of particles in space can provide insights into the behavior of stars, planets, and even entire galaxies. For example, the presence of a magnetic field can influence the formation of stars and the dynamics of stellar winds. In conclusion, the term magneton represents a fundamental concept in the study of magnetism, serving as a crucial unit for measuring magnetic moments in various contexts. Whether in atomic physics, material science, or astrophysics, the magneton plays a significant role in our understanding of the magnetic properties of matter. As we continue to explore the universe and develop new technologies, the importance of the magneton and its applications will undoubtedly grow, highlighting the interconnectedness of different fields of science and the profound impact of magnetic phenomena on our world.
在物理学领域,特别是在磁学研究中,人们经常会遇到术语magneton。magneton是一个基本单位,用于测量基本粒子、原子或分子的磁矩。magneton的概念对于理解各种材料如何响应磁场至关重要。它提供了一种量化粒子或粒子集合产生的磁场的强度和方向的方法。最常见的magneton类型是玻尔磁矩,以著名物理学家尼尔斯·玻尔的名字命名。玻尔磁矩被定义为围绕原子核运动的电子的磁矩。当讨论原子的磁性时,这个单位是必不可少的,并且在量子力学中常用于描述电子在磁场中的行为。另一个重要的magneton类型是核磁矩,用于描述原子核中核子(质子和中子)的磁矩。由于考虑了电子与核子之间的质量差异,核磁矩显著小于玻尔磁矩。这一区别对于物理学家在分析原子核的磁性时至关重要,特别是在核磁共振(NMR)和其他相关技术的背景下。理解magneton的概念不仅限于理论物理,它也有实际应用。例如,在材料科学领域,材料的磁性特性通常使用magneton的概念进行表征。通过测量不同材料的磁矩,科学家可以确定材料是铁磁性、顺磁性还是抗磁性。这些特性对于开发新材料以用于各种应用(包括电子产品、数据存储和医学成像技术)至关重要。此外,magneton的研究在天体物理学领域也有影响。天体物理学家经常研究天体的磁场及其与宇宙辐射的相互作用。理解空间中粒子的磁矩可以为我们提供关于恒星、行星甚至整个星系行为的见解。例如,磁场的存在可以影响恒星的形成和恒星风的动力学。总之,术语magneton代表了磁学研究中的一个基本概念,是测量各种背景下磁矩的重要单位。无论是在原子物理、材料科学还是天体物理学中,magneton在我们理解物质的磁性特性方面都发挥着重要作用。随着我们继续探索宇宙并开发新技术,magneton的重要性及其应用无疑会增长,突显出不同科学领域之间的相互联系以及磁现象对我们世界的深远影响。