radioelement
简明释义
英[ˌreɪdɪəʊˈelɪmənt]美[ˌreɪdiːoʊˈeləmənt]
n. [核] 放射性元素
英英释义
A radioelement is a chemical element that is radioactive, meaning it has unstable nuclei that can decay and emit radiation. | 放射性元素是指一种具有放射性的化学元素,意味着它的原子核不稳定,可以衰变并发出辐射。 |
单词用法
放射性元素衰变 | |
放射性元素浓度 | |
天然放射性元素 | |
人工放射性元素 | |
测量放射性元素水平 | |
在样本中检测放射性元素 | |
放射性元素分析 | |
放射性元素安全指南 |
同义词
反义词
稳定元素 | 稳定元素通常用于建筑材料中。 | ||
非放射性元素 | Non-radioactive elements are considered safe for many applications. | 非放射性元素被认为在许多应用中是安全的。 |
例句
1.The radioelement content of certain material is higher, when its intensity and radiation dosage exceed certain limit, can cause a harm to human body.
某些材料的放射性元素含量较高,其强度和辐射剂量超过一定限度时,就会对人体造成危害。
2.My Marie Curie (1867-1934) French nationality Polish scientists to study the phenomenon of radioactive found radium and polonium two radioelement, twice the life of Nobel Prize.
居里夫人Marie Curie(1867- 1934)法国国籍波兰科学家,研究放射性现象,发现镭和钋两种放射性元素,一生两度获诺贝尔奖。
3.My Marie Curie (1867-1934) French nationality Polish scientists to study the phenomenon of radioactive found radium and polonium two radioelement, twice the life of Nobel Prize.
居里夫人Marie Curie(1867- 1934)法国国籍波兰科学家,研究放射性现象,发现镭和钋两种放射性元素,一生两度获诺贝尔奖。
4.The medical use of radioelement 放射性元素 in imaging techniques has revolutionized diagnostics.
在成像技术中使用radioelement 放射性元素的医学应用已经彻底改变了诊断。
5.In geology, the presence of a specific radioelement 放射性元素 can indicate the age of rocks.
在地质学中,特定radioelement 放射性元素的存在可以指示岩石的年龄。
6.Researchers are investigating the effects of radioelement 放射性元素 contamination in groundwater.
研究人员正在调查radioelement 放射性元素污染对地下水的影响。
7.The study of radioelement 放射性元素 behavior is crucial in nuclear physics.
对radioelement 放射性元素行为的研究在核物理学中至关重要。
8.Nuclear reactors utilize radioelement 放射性元素 as fuel to generate energy.
核反应堆利用radioelement 放射性元素作为燃料来产生能量。
作文
In the field of nuclear physics and chemistry, the term radioelement refers to an element that is radioactive, meaning it has unstable isotopes that decay over time, releasing radiation in the process. This phenomenon can be observed in various elements, including uranium, radium, and thorium, which are well-known for their radioactive properties. The study of radioelements is crucial not only for understanding fundamental scientific principles but also for practical applications in medicine, energy production, and environmental science.Radioelements play a significant role in medical technology, particularly in the field of oncology. For instance, certain radioelements, such as iodine-131, are used in the treatment of thyroid cancer. By harnessing the radioactive properties of these elements, doctors can target and destroy cancerous cells while minimizing damage to surrounding healthy tissue. This targeted approach exemplifies how the study of radioelements can lead to innovative treatments that improve patient outcomes.Moreover, radioelements are essential in the generation of nuclear energy. Nuclear power plants utilize the fission of heavy radioelements, like uranium-235, to produce energy. When these atoms are split, they release a tremendous amount of energy, which can be harnessed to generate electricity. This process not only provides a substantial source of energy but also poses challenges regarding safety and waste management. The handling of spent radioelements requires careful consideration to prevent environmental contamination and protect public health.In addition to their applications in medicine and energy, radioelements also have implications for environmental science. Natural radioelements are found in soil and rocks, and their decay products can sometimes contaminate groundwater. Understanding the behavior of these elements in the environment is critical for assessing risks and implementing safety measures. Scientists study the distribution and concentration of radioelements in various ecosystems to evaluate potential health hazards and develop strategies for remediation.Despite their many benefits, radioelements also pose significant risks. Exposure to high levels of radiation from radioelements can lead to serious health issues, including cancer and genetic mutations. Therefore, strict regulations govern the use and disposal of radioactive materials. It is imperative for researchers and industries working with radioelements to adhere to safety protocols to mitigate the risks associated with radiation exposure.In conclusion, the study of radioelements encompasses a wide range of scientific disciplines and practical applications. From advancing medical treatments to generating nuclear energy and addressing environmental concerns, radioelements are integral to modern science and technology. As we continue to explore their properties and potential uses, it is essential to balance the benefits with the associated risks, ensuring that we harness the power of radioelements safely and responsibly.
在核物理和化学领域,术语radioelement指的是一种放射性元素,意味着它具有不稳定的同位素,随着时间的推移会衰变,并释放辐射。这种现象可以在多种元素中观察到,包括铀、镭和钍,这些元素因其放射性特性而广为人知。对radioelements的研究不仅对理解基本科学原理至关重要,而且在医学、能源生产和环境科学等实际应用中也具有重要意义。放射性元素在医疗技术中发挥着重要作用,特别是在肿瘤学领域。例如,某些radioelements如碘-131被用于治疗甲状腺癌。通过利用这些元素的放射性特性,医生可以针对并摧毁癌细胞,同时尽量减少对周围健康组织的损害。这种有针对性的方法充分展示了对radioelements的研究如何促成创新治疗,从而改善患者的治疗效果。此外,radioelements在核能的生成中也是必不可少的。核电站利用重radioelements(如铀-235)的裂变来产生能量。当这些原子被分裂时,会释放出巨大的能量,这些能量可以被用来发电。这个过程不仅提供了大量的能源,但也带来了安全和废物管理方面的挑战。处理废弃的radioelements需要仔细考虑,以防止环境污染和保护公众健康。除了在医学和能源方面的应用外,radioelements对环境科学也有影响。自然radioelements存在于土壤和岩石中,其衰变产物有时会污染地下水。了解这些元素在环境中的行为对于评估风险和实施安全措施至关重要。科学家们研究不同生态系统中radioelements的分布和浓度,以评估潜在的健康危害并制定修复策略。尽管有许多好处,radioelements也带来了重大风险。高水平的放射性暴露可能导致严重的健康问题,包括癌症和基因突变。因此,严格的规定管理放射性材料的使用和处置。研究人员和与radioelements相关的行业必须遵守安全协议,以减轻与辐射暴露相关的风险。总之,对radioelements的研究涵盖了广泛的科学学科和实际应用。从推进医疗治疗到产生核能以及应对环境问题,radioelements在现代科学和技术中是不可或缺的。随着我们继续探索它们的属性和潜在用途,平衡好益处与相关风险至关重要,确保我们安全和负责任地利用radioelements的力量。