motoneuron
简明释义
英[ˌməʊtəˈnjʊərɒn]美[ˌmoʊtəˈnʊrɑːn]
n. 运动神经元
英英释义
A motoneuron is a type of neuron that conveys signals from the central nervous system to muscles, facilitating movement. | 运动神经元是一种神经元,负责将信号从中枢神经系统传递到肌肉,从而促进运动。 |
单词用法
α型运动神经元 | |
γ型运动神经元 | |
下运动神经元 | |
上运动神经元 | |
运动神经元疾病 | |
运动神经元激活 | |
运动神经元群 | |
运动神经元通路 |
同义词
反义词
例句
1.Conclusions: Delayed reimplantation of avulsion ventral root can enhance motoneuron survival and regeneration.
结论:前根撕脱延期再植回能促进脊髓前角运动神经元的存活与再生。
2.Objective To study the effect of testosterone propionate(TP)on the distribution pattern of calcitonin gene-related peptide(CGRP)in two types of motoneuron(Mn)pools in rats.
目的探讨丙酸睾丸酮对大鼠两种不同功能运动神经元群降钙素基因相关肽(CGRP)配布式样的影响。
3.F waves result from the back fire of the motoneuron activation, which may indirectly reflect the functional state of the motoneurons.
波由运动神经元逆向兴奋引起,故有可能间接评价运动神经元的功能状态。
4.Results A typical pattern of morphological changes of motoneuron apoptosis in the anterior horn of spinal cord was observed by both TUNEL staining and electron microscopy.
结果坐骨神经切断后TUNEL染色和电镜观察均检测到脊髓前角运动神经元典型的凋亡形态学改变。
5.Objective to extract the neurotrophic factors with motoneuron neurotrophic activity from the brains of embryo.
目的从人胚胎脑中提取对运动神经元具有生物活性的神经营养因子。
6.Conclusion the inhibitory effect of intrathecal galanin on flexor contractions is probably due to reduction in the excitability of motoneuron and might prevent muscles from over - movement.
结论髓鞘内甘丙肽可能通过减低运动神经兴奋性而产生抑制屈肌运动效应,从而有利防止骨骼肌运动过度。
7.Conclusion the inhibitory effect of intrathecal galanin on flexor contractions is probably due to reduction in the excitability of motoneuron and might prevent muscles from over - movement.
结论髓鞘内甘丙肽可能通过减低运动神经兴奋性而产生抑制屈肌运动效应,从而有利防止骨骼肌运动过度。
8.Conclusions: the limb bud extract showed marked motoneuron neurotrophic activities compared with the two controls.
结论:与两对照组相比,胎鼠肢芽提取液呈现了显著的运动神经营养活性。
9.Electromyography can help assess the function of motoneurons 运动神经元 in patients.
肌电图可以帮助评估患者的运动神经元功能。
10.Researchers are studying how motoneurons 运动神经元 communicate with muscle fibers.
研究人员正在研究运动神经元如何与肌肉纤维沟通。
11.The damage to the motoneuron 运动神经元 can lead to muscle weakness.
对运动神经元的损伤可能导致肌肉无力。
12.In ALS, the degeneration of motoneurons 运动神经元 causes progressive muscle atrophy.
在肌萎缩侧索硬化症中,运动神经元的退化导致逐渐的肌肉萎缩。
13.The spinal cord contains the cell bodies of motoneurons 运动神经元 that control voluntary movements.
脊髓中包含控制自主运动的运动神经元的细胞体。
作文
The human body is a complex machine, and at the heart of its functionality are various types of neurons. Among these, the motoneuron (运动神经元) plays a crucial role in our ability to move and interact with the world around us. Understanding what a motoneuron (运动神经元) is and how it operates can provide insights into both the nervous system and the mechanics of movement.A motoneuron (运动神经元) is a type of neuron that is responsible for transmitting signals from the spinal cord and brain to the muscles in the body. These signals are essential for muscle contraction and movement. When a motoneuron (运动神经元) fires, it sends an electrical impulse down its axon, which ultimately leads to the release of neurotransmitters at the neuromuscular junction. This process triggers the muscle fibers to contract, allowing for voluntary movements such as walking, running, or even simple actions like picking up a cup.There are two main types of motoneurons (运动神经元): upper motor neurons and lower motor neurons. Upper motor neurons originate in the brain and carry signals down to the spinal cord. In contrast, lower motor neurons connect the spinal cord to the muscles. Both types work together to facilitate smooth and coordinated movements. Damage to either type of motoneuron (运动神经元) can result in serious motor function impairments, highlighting their importance in our daily lives.Diseases that affect motoneurons (运动神经元), such as Amyotrophic Lateral Sclerosis (ALS), can lead to progressive muscle weakness and atrophy. Patients with ALS experience the degeneration of both upper and lower motoneurons (运动神经元), which eventually results in the loss of voluntary control over muscles. This devastating condition underscores the critical role that motoneurons (运动神经元) play in maintaining motor function and overall quality of life.Research into motoneurons (运动神经元) has advanced significantly in recent years, leading to a better understanding of their structure and function. Scientists are exploring various therapeutic approaches to protect and regenerate motoneurons (运动神经元), aiming to develop treatments that could slow down or even reverse the effects of neurodegenerative diseases. Stem cell therapy, gene therapy, and neuroprotective strategies are among the most promising areas of research.In conclusion, motoneurons (运动神经元) are fundamental components of the nervous system, enabling us to perform everyday tasks and maintain our independence. Their health and functionality are vital for a fulfilling life, and ongoing research continues to uncover the mysteries surrounding these remarkable cells. As we deepen our understanding of motoneurons (运动神经元) and their role in movement, we move closer to finding effective treatments for the conditions that threaten our mobility and quality of life.
人类身体是一个复杂的机器,而其功能的核心在于各种类型的神经元。在这些神经元中,运动神经元是我们能够移动和与周围世界互动的重要组成部分。理解什么是运动神经元及其如何运作,可以为我们提供有关神经系统和运动机制的深入见解。运动神经元是一种负责从脊髓和大脑传递信号到全身肌肉的神经元。这些信号对于肌肉收缩和运动至关重要。当运动神经元发射时,它会通过其轴突向下发送电信号,最终导致在神经肌肉接头释放神经递质。这个过程触发肌肉纤维收缩,使我们能够进行自愿运动,如走路、跑步或简单的动作,比如拿起杯子。运动神经元主要有两种类型:上运动神经元和下运动神经元。上运动神经元起源于大脑,将信号传递到脊髓。而下运动神经元则将脊髓与肌肉连接。两者协同工作,以促进平滑和协调的运动。对任一类型的运动神经元的损伤都可能导致严重的运动功能障碍,这凸显了它们在我们日常生活中的重要性。影响运动神经元的疾病,如肌萎缩侧索硬化症(ALS),可能导致逐渐的肌肉无力和萎缩。ALS患者经历上下运动神经元的退化,最终导致对肌肉的自愿控制丧失。这种毁灭性的病症强调了运动神经元在维持运动功能和整体生活质量中的关键作用。近年来,对运动神经元的研究取得了显著进展,使我们对其结构和功能有了更好的理解。科学家们正在探索各种治疗方法,以保护和再生运动神经元,旨在开发能够减缓甚至逆转神经退行性疾病影响的治疗方案。干细胞治疗、基因治疗和神经保护策略是最有前景的研究领域之一。总之,运动神经元是神经系统的基本组成部分,使我们能够执行日常任务并保持独立。它们的健康和功能对充实的生活至关重要,持续的研究不断揭示围绕这些非凡细胞的奥秘。随着我们对运动神经元及其在运动中作用的理解加深,我们离找到有效治疗威胁我们运动能力和生活质量的疾病的目标又近了一步。