semicrystalline

简明释义

[ˌsemɪˈkrɪstəlaɪn][ˌsemɪˈkrɪstəlɪn]

adj. (岩)半晶质的

英英释义

Partially crystalline, referring to a material that has both crystalline and amorphous regions.

部分晶体的,指一种材料同时具有晶体和非晶体区域。

单词用法

semicrystalline materials

半晶体材料

semicrystalline phase

半晶体相

characteristics of semicrystalline polymers

半晶体聚合物的特性

properties of semicrystalline materials

半晶体材料的性质

同义词

partially crystalline

部分晶体的

Many polymers exhibit a semicrystalline structure that affects their mechanical properties.

许多聚合物表现出半晶体结构,这影响了它们的机械性能。

反义词

amorphous

无定形的

Amorphous materials lack a defined structure.

无定形材料没有明确的结构。

crystalline

结晶的

Crystalline solids have a highly ordered arrangement of atoms.

结晶固体具有高度有序的原子排列。

例句

1.Worm_like mesoporous metal oxides with thermal stability, large surface areas and semicrystalline frameworks have a prospect for using in catalysis, sensors, adsorption and separation, etc.

热稳定性好、比表面积高、孔壁晶化较好的蜂窝状金属氧化物介孔材料在催化、吸附与分离、传感器等领域有着潜在的应用价值。

2.PPTC Principle of Operation PPTC circuit-protection devices are formed from a composite of semicrystalline polymer and conductive particles.

PPTC的动作原理PPTC线路保护设备的动作媒介是由半晶质的化合物和电导介质组成。

3.The structure of the coating is amorphous or semicrystalline.

该镀层结构为非晶态或混晶态。

4.PVDF is a semicrystalline polymer whose crystalline domains appear in four different forms.

PVDF是一种半晶状聚合物,它有四种不同的晶型。

5.Worm_like mesoporous metal oxides with thermal stability, large surface areas and semicrystalline frameworks have a prospect for using in catalysis, sensors, adsorption and separation, etc.

热稳定性好、比表面积高、孔壁晶化较好的蜂窝状金属氧化物介孔材料在催化、吸附与分离、传感器等领域有着潜在的应用价值。

6.A simulated annealing method is used to study the micro phase separation and crystallization in cylinder-forming semicrystalline diblock copolymers.

利用模拟退火方法研究非对称半结晶两嵌段共聚物熔体分别在弱分离和强分离条件下的结晶过程。

7.In the manufacturing process, we need to ensure that the product remains semicrystalline 半结晶的 for optimal performance.

在制造过程中,我们需要确保产品保持半结晶的状态以获得最佳性能。

8.Scientists are studying the semicrystalline 半结晶的 phases in polymers to improve their thermal stability.

科学家们正在研究聚合物中的半结晶的相,以提高其热稳定性。

9.The semicrystalline 半结晶的 structure of the ice helps it to maintain its shape longer than amorphous ice.

冰的半结晶的结构使其比无定形冰更能保持形状。

10.The semicrystalline 半结晶的 nature of certain metals can enhance their ductility.

某些金属的半结晶的特性可以增强其延展性。

11.The polymer used in this application is a semicrystalline 半结晶的 material that provides excellent mechanical properties.

在这个应用中使用的聚合物是一种半结晶的材料,提供了优良的机械性能。

作文

Materials science is a fascinating field that explores the properties and applications of various substances. One important category of materials is polymers, which can be classified based on their molecular structure. Among these classifications, the term semicrystalline (半结晶) is crucial for understanding how certain polymers behave under different conditions. Semicrystalline materials have both ordered (crystalline) regions and disordered (amorphous) regions within their structure. This unique combination significantly influences their physical properties, such as strength, flexibility, and thermal stability.The presence of semicrystalline regions allows these materials to exhibit a balance between rigidity and toughness. For instance, polyethylene, one of the most widely used plastics, is often found in a semicrystalline state. Its crystalline regions contribute to its strength, while the amorphous regions provide flexibility. This balance makes polyethylene suitable for a variety of applications, from plastic bags to containers and even piping systems.Understanding the semicrystalline nature of polymers is essential for engineers and scientists who design new materials. By manipulating the conditions under which a polymer is processed, such as temperature and cooling rates, it is possible to control the degree of crystallinity. This control can lead to enhanced performance characteristics tailored for specific applications. For example, increasing the crystalline content in a polymer can improve its tensile strength but may reduce its impact resistance. Therefore, achieving the right balance is key to optimizing material properties.Moreover, the thermal properties of semicrystalline materials are also noteworthy. They typically exhibit distinct melting and crystallization behaviors, which can be observed through techniques such as differential scanning calorimetry (DSC). When heated, the crystalline regions of a semicrystalline polymer will melt at a specific temperature, allowing the material to transition into a more fluid state. This behavior is critical in processes like injection molding, where precise temperature control is necessary to ensure the final product meets quality standards.In addition to their mechanical and thermal properties, semicrystalline materials are also known for their chemical resistance. The ordered structure of the crystalline regions can provide a barrier against chemical penetration, making these materials suitable for use in harsh environments. For instance, many semicrystalline polymers are employed in the automotive and aerospace industries, where they must withstand exposure to fuels, oils, and other corrosive substances.In conclusion, the concept of semicrystalline (半结晶) materials plays a vital role in the field of materials science. Their unique combination of crystalline and amorphous structures leads to a variety of desirable properties, making them indispensable in numerous applications. As research continues to advance, the understanding and manipulation of semicrystalline materials will undoubtedly open new avenues for innovation in technology and engineering. Whether it is enhancing the performance of everyday products or developing cutting-edge materials for specialized applications, the significance of semicrystalline structures cannot be overstated.

材料科学是一个迷人的领域,探索各种物质的性质和应用。其中一个重要的材料类别是聚合物,这些聚合物可以根据其分子结构进行分类。在这些分类中,术语semicrystalline(半结晶)对于理解某些聚合物在不同条件下的行为至关重要。Semicrystalline材料在其结构中具有有序(结晶)区域和无序(非晶)区域的组合。这种独特的组合显著影响了它们的物理特性,如强度、柔韧性和热稳定性。Semicrystalline区域的存在使这些材料能够表现出刚性与韧性之间的平衡。例如,聚乙烯是最广泛使用的塑料之一,通常以semicrystalline状态存在。其结晶区域有助于增强强度,而无定形区域则提供柔韧性。这种平衡使聚乙烯适用于多种应用,从塑料袋到容器甚至管道系统。理解聚合物的semicrystalline特性对设计新材料的工程师和科学家至关重要。通过操控聚合物加工的条件,如温度和冷却速率,可以控制结晶度。这种控制可以导致性能特征的增强,以适应特定应用。例如,增加聚合物中的结晶含量可以提高其拉伸强度,但可能会降低其冲击韧性。因此,达到正确的平衡是优化材料特性的关键。此外,semicrystalline材料的热性能也值得注意。它们通常表现出明显的熔融和结晶行为,可以通过差示扫描量热法(DSC)等技术观察到。当加热时,semicrystalline聚合物的结晶区域将在特定温度下熔化,使材料转变为更流动的状态。这种行为在注塑成型等过程中至关重要,在这些过程中,精确的温度控制是确保最终产品符合质量标准的必要条件。除了机械和热性能外,semicrystalline材料还以其化学抗性而闻名。结晶区域的有序结构可以提供对化学渗透的屏障,使这些材料适合在恶劣环境中使用。例如,许多semicrystalline聚合物被用于汽车和航空航天工业,在这些行业中,它们必须承受燃料、油和其他腐蚀性物质的侵蚀。总之,semicrystalline(半结晶)材料的概念在材料科学领域发挥着至关重要的作用。它们独特的结晶和非晶结构组合导致了多种可取的特性,使其在众多应用中不可或缺。随着研究的不断进展,对semicrystalline材料的理解和操控无疑将为技术和工程的创新开辟新的途径。无论是提升日常产品的性能,还是开发用于专业应用的尖端材料,semicrystalline结构的重要性都不容小觑。