sinter
简明释义
n. 烧结物;熔渣;泉华
vt. 使烧结;使熔结
vi. 烧结;熔结
n. (Sinter)(瑞典)辛特(人名)
英英释义
单词用法
烧结机 |
同义词
熔化 | 在高温下,金属会熔合在一起。 | ||
融化 | 在温暖的阳光下,冰开始融化。 | ||
巩固 | 颗粒巩固形成一个固体块。 |
反义词
熔化 | 冰在热量的作用下会熔化。 | ||
溶解 | 盐会在水中溶解。 |
例句
1.The simulation provides theoretical reference on making sinter technical system of workpiece.
模拟结果为磁瓦烧结工艺制度的制定提供理论依据。
2.As a result, with introducing this kind of additive, the sinter yield elevated, cold strength and RDI of sinter improved.
试验结果表明:配加硼灰泥粉后,烧结矿成品率提高,冷强度和低温还原粉化性能改善。
3.The hydrothermal reaction sinter mechanism was discussed.
并探讨了水热反应烧结机理。
4.The sinter can be directly used in smelting iron bearing chromium.
该烧结矿可直接用于冶炼含铬生铁。
5.The influence of ions concentration and sinter on bactericidal property and weather resistance are study.
研究了银锌离子用量及烧结对抗菌性能和耐候性的影响。
6.A kind of plastic theory of sinter is presented in this article.
本文提出了一种烧结体塑性理论。
7.The domestic ores are fine magnetite concentrate, and the imported ores mainly are hematite sinter fines.
国产铁精矿是细粒度的磁选精矿,进口铁矿则以粉状赤铁矿为主。
8.These new technologies will promote the production of high quality sinter in our country.
这些新技术必将促进我国优质烧结矿的生产。
9.In ceramics, clay particles sinter 烧结 together when fired at high temperatures.
在陶瓷中,粘土颗粒在高温下
10.The metal components must be carefully sintered 烧结 to ensure they achieve the desired strength.
金属组件必须仔细
11.The process of heating the powder causes it to sinter 烧结, forming a solid mass.
加热粉末的过程使其
12.During the sintering 烧结 process, the temperature must be carefully controlled.
在sintering 烧结过程中,温度必须仔细控制。
13.Additives can help improve the sintering 烧结 process of certain materials.
添加剂可以帮助改善某些材料的sintering 烧结过程。
作文
In the field of materials science, the process of sintering plays a crucial role in the fabrication of various components. Sintering is a method that involves heating powdered material below its melting point to form a solid mass. This technique is widely used in the production of ceramics, metals, and other materials, allowing for the creation of complex shapes and structures that would be difficult to achieve through traditional casting methods.The basic principle behind sintering is that when powdered materials are heated, the particles begin to bond together. This occurs due to diffusion, where atoms or molecules migrate from one particle to another, leading to a reduction in porosity and an increase in density. The temperature and duration of the heating process are critical parameters that influence the properties of the final product. For instance, higher temperatures generally lead to stronger bonds between particles, resulting in materials with enhanced mechanical properties.One of the significant advantages of sintering is its ability to produce materials with tailored properties. By adjusting the composition of the powder mixture and the sintering conditions, manufacturers can create materials with specific characteristics such as improved strength, thermal resistance, or electrical conductivity. This versatility makes sintering a popular choice in industries ranging from aerospace to electronics.Moreover, sintering can also contribute to sustainability in manufacturing. The process often generates less waste compared to traditional machining techniques, as it allows for near-net shape production. This means that the final product requires minimal finishing work, reducing material loss and energy consumption. Additionally, many powdered materials used in sintering can be recycled, further enhancing the ecological benefits of this method.However, there are challenges associated with sintering that must be addressed. One of the primary concerns is the control of microstructure during the sintering process. Variations in temperature, time, and atmosphere can lead to inconsistencies in the final product's properties. Therefore, ongoing research is focused on optimizing sintering parameters to achieve more uniform results.In conclusion, sintering is a vital process in materials science that enables the production of high-performance components across various industries. Its ability to create strong, durable materials while minimizing waste makes it an attractive option for manufacturers aiming to enhance their sustainability efforts. As technology continues to advance, the potential applications of sintering will likely expand, paving the way for innovative solutions to modern engineering challenges.
在材料科学领域,sinter过程在各种组件的制造中发挥着关键作用。sinter是一种将粉末材料加热到其熔点以下以形成固体块的工艺。这种技术广泛应用于陶瓷、金属和其他材料的生产,使得制造复杂形状和结构成为可能,而这些通过传统铸造方法难以实现。sinter的基本原理是,当粉末材料被加热时,颗粒开始相互结合。这是由于扩散的发生,原子或分子从一个颗粒迁移到另一个颗粒,导致孔隙度降低和密度增加。加热过程的温度和持续时间是影响最终产品性能的关键参数。例如,更高的温度通常会导致颗粒之间更强的结合,从而产生具有增强机械性能的材料。sinter的一个显著优势是其能够生产具有定制特性的材料。通过调整粉末混合物的组成和sinter条件,制造商可以创造出具有特定特征的材料,例如提高强度、热阻或电导率。这种多功能性使得sinter成为航空航天、电子等行业的热门选择。此外,sinter还可以为制造业的可持续性做出贡献。与传统的机械加工技术相比,这一过程通常产生的废料更少,因为它允许近净形状的生产。这意味着最终产品需要最小的后处理工作,从而减少材料损失和能耗。此外,许多用于sinter的粉末材料可以回收利用,进一步增强了这种方法的生态效益。然而,sinter过程中也存在一些挑战需要解决。其中一个主要问题是控制微观结构。在sinter过程中,温度、时间和气氛的变化可能导致最终产品性能的不一致。因此,持续的研究集中在优化sinter参数,以实现更均匀的结果。总之,sinter是材料科学中的一个重要过程,使得在各个行业中生产高性能组件成为可能。其在最小化废物的同时创造出强大耐用材料的能力,使其成为希望增强可持续努力的制造商的有吸引力的选择。随着技术的不断进步,sinter的潜在应用可能会扩大,为现代工程挑战提供创新解决方案。