revertant
简明释义
n. 回复体;回复突变体;逆转株
adj. 回复突变的;回复体的
英英释义
A revertant is an organism or cell that has reverted to a previous state or phenotype, often after undergoing a mutation or change. | revertant是指一种生物或细胞在经历突变或变化后,重新回到先前状态或表型的现象。 |
单词用法
遗传revertant | |
revertant菌株 | |
revertant表型 | |
revertants的研究 | |
识别revertants | |
表征revertants |
同义词
反义词
进步者 | 技术的进步者改变了我们的生活。 | ||
进展者 | 他是医学领域的进展者。 |
例句
1.In these trials, dystrophin-positive fibres were accounted for by transcriptional (revertant) variants of the mutant dystrophin transcript.
在这些试验中,营养不良素阳性的肌纤维是由营养不良素转录体的突变引起的。
2.In these trials, dystrophin-positive fibres were accounted for by transcriptional (revertant) variants of the mutant dystrophin transcript.
在这些试验中,营养不良素阳性的肌纤维是由营养不良素转录体的突变引起的。
3.The revertant form of the plant showed increased resistance to pests compared to its mutant counterpart.
与其突变体相比,这种植物的revertant 形式显示出对害虫的更高抗性。
4.The revertant phenotype was observed after several generations of selective breeding.
经过几代选择性繁殖后,观察到了revertant 表型。
5.The scientist discovered a revertant mutation that restored the original function of the gene.
科学家发现了一种revertant 突变,它恢复了基因的原始功能。
6.In the lab, we are studying a revertant strain of bacteria that had lost its antibiotic resistance.
在实验室中,我们正在研究一种失去了抗生素耐药性的revertant 细菌株。
7.Researchers are excited about the potential of revertants in developing new therapies for genetic disorders.
研究人员对revertants 在开发遗传疾病新疗法中的潜力感到兴奋。
作文
In the world of genetics, the term revertant refers to an organism that has reverted back to a previous genetic state after undergoing a mutation. This concept is particularly fascinating as it highlights the dynamic nature of genetic material and the potential for organisms to regain lost traits or functions. Understanding revertants can shed light on evolutionary processes and the mechanisms of adaptation. For instance, consider a population of bacteria that has developed resistance to a certain antibiotic due to a mutation. Over time, if the antibiotic is removed from the environment, some of these bacteria may revert back to their original, non-resistant state. These revertants can provide valuable insights into how mutations affect survival and reproduction in changing environments. In agricultural practices, the concept of revertant plants is also significant. Farmers often cultivate genetically modified crops that exhibit desirable traits such as increased yield or pest resistance. However, under certain conditions, these crops may produce revertants that lose these modifications and revert to their wild-type forms. This phenomenon raises concerns about the stability of genetically modified organisms and their long-term impact on ecosystems. Moreover, the study of revertants extends beyond bacteria and plants; it also encompasses animal genetics. In laboratory settings, researchers may induce mutations in model organisms like mice or fruit flies to study genetic diseases. Occasionally, some of these organisms may produce revertants that regain normal function, providing hope for understanding and potentially treating genetic disorders in humans. The implications of revertants are vast and varied. In medicine, the ability to identify and study revertant cells can lead to breakthroughs in cancer research, as certain cancer cells may revert to a less aggressive state, offering clues for new treatment strategies. Additionally, understanding the mechanisms behind revertants can help scientists develop better methods for gene therapy, where the goal is to correct faulty genes responsible for diseases. In conclusion, the concept of revertant plays a crucial role in our understanding of genetics, evolution, and biotechnology. Whether in bacteria, plants, or animals, revertants serve as a reminder of the fluidity of genetic information and the potential for recovery and adaptation. As research continues to advance, the study of revertants will undoubtedly contribute to our knowledge of life sciences and open new avenues for innovation in various fields. Ultimately, the exploration of revertants not only enhances our comprehension of biological systems but also challenges us to think critically about the implications of genetic changes in nature and technology. By embracing the complexities surrounding revertants, we can better appreciate the intricate tapestry of life and the ongoing journey of evolution.
在遗传学的世界中,术语revertant指的是一种生物体在经历突变后又回到先前的遗传状态。这个概念尤其引人入胜,因为它突显了遗传物质的动态特性,以及生物体重新获得失去的特征或功能的潜力。理解revertants可以揭示进化过程和适应机制。例如,考虑一个已经因突变而发展出对某种抗生素耐药性的细菌种群。随着时间的推移,如果抗生素从环境中去除,这些细菌中的一些可能会回到它们原始的、非耐药状态。这些revertants可以提供关于突变如何影响生存和繁殖在变化环境中的宝贵见解。在农业实践中,revertant植物的概念也很重要。农民经常种植具有优良特性的转基因作物,如产量增加或抗虫害。然而,在某些条件下,这些作物可能会产生失去这些改良并恢复到其野生型形式的revertants。这一现象引发了对转基因生物稳定性及其对生态系统长期影响的担忧。此外,revertants的研究不仅限于细菌和植物;它还涉及动物遗传学。在实验室环境中,研究人员可能会诱导模型生物(如小鼠或果蝇)中的突变,以研究遗传疾病。偶尔,这些生物可能会产生恢复正常功能的revertants,为理解和潜在治疗人类遗传疾病提供希望。revertants的影响是广泛而多样的。在医学领域,识别和研究revertant细胞的能力可能会导致癌症研究的突破,因为某些癌细胞可能会恢复到较不具攻击性的状态,从而为新的治疗策略提供线索。此外,理解revertants背后的机制可以帮助科学家们开发更好的基因疗法方法,旨在纠正导致疾病的有缺陷基因。总之,revertant的概念在我们理解遗传学、进化和生物技术方面发挥着至关重要的作用。无论是在细菌、植物还是动物中,revertants都提醒我们遗传信息的流动性以及恢复和适应的潜力。随着研究的不断推进,revertants的研究无疑将为我们对生命科学的知识做出贡献,并为各个领域的创新开辟新的途径。最终,探索revertants不仅增强了我们对生物系统的理解,还挑战我们批判性地思考遗传变化在自然和技术中的影响。通过拥抱围绕revertants的复杂性,我们可以更好地欣赏生命的复杂织锦以及进化的持续旅程。