inertial

简明释义

[ɪˈnɜːʃl][ɪˈnɜːrʃl]

adj. 惯性的;不活泼的

英英释义

Relating to or characterized by inertia; not having the ability to move or act independently.

与惯性有关或具有惯性的特征;没有独立移动或行动的能力。

In physics, pertaining to the property of an object to remain at rest or in uniform motion unless acted upon by an external force.

在物理学中,指物体保持静止或匀速运动的性质,除非受到外力的作用。

单词用法

inertial navigation

[电]惯性导航(等于inertial guidance)

inertial navigation system

[军]惯性导航系统

同义词

static

静态的

The object remained static due to the lack of external forces.

由于缺乏外力,物体保持静态。

motionless

静止的

The car was motionless at the red light.

汽车在红灯前静止不动。

inactive

不活跃的

The inactive state of the system allowed for easier analysis.

系统的不活跃状态使分析变得更容易。

反义词

active

主动的

The active participation of students is crucial for effective learning.

学生的主动参与对有效学习至关重要。

dynamic

动态的

Dynamic systems are often more adaptable to changes in the environment.

动态系统通常对环境变化更具适应性。

例句

1.The inertial rigid vibration conveyor of ore are studied in the vibration of three freedom and obtained the solution.

简要地讨论了惯性、刚性振动出矿机在三个自由度下运动的解答;

2.An aircraft gaining speed during take-off is evidently not an inertial system.

一架正在加速起飞的飞机,显然不是惯性系统。

3.Honeywell Providing fly-by-wire flight control system, inertial reference and air data systems, auxiliary power unit, wheels and brakes.

霍尼韦尔提供电传飞控系统,惯性参考和空中数据系统,辅助动力装置,机轮刹车。

4.The WZ-5A is fitted with a combined inertial and GPS navigation system for improved accuracy.

WZ - 5 A配备有一套组合惯性和GPS导航系统用于提高精度。

5.Linear and nonlinear error models for Inertial Navigation System (INS) initial alignment are established.

建立了惯导系统(INS)初始对准的线性和非线性误差模型。

6.Computational simulations are the main method to study fluid instability during an implosion in inertial confinement fusion.

数值模拟是惯性约束聚变内爆中流体不稳定性研究的主要方法。

7.The scale-factor error of inertia component is greatly influential to the precision of Inertial Navigation System (INS).

在惯性导航系统中,惯性元件的标度因数误差对系统的误差产生了极大的影响。

8.Pinch-to-zoom, inertial scrolling, tap-to-click, it's all there.

捏动缩放、惯性滚动、轻击,都支持。

9.The spacecraft's inertial 惯性的 navigation system allows it to determine its position without external references.

宇宙飞船的惯性导航系统使其能够在没有外部参考的情况下确定其位置。

10.To maintain stability, the robot relies on its inertial 惯性的 feedback system.

为了保持稳定,机器人依赖其惯性反馈系统。

11.The car's inertial 惯性的 sensors help improve safety features like automatic braking.

汽车的惯性传感器有助于提高自动刹车等安全功能。

12.In physics, inertial 惯性的 frames of reference are crucial for understanding motion.

在物理学中,惯性参考框架对于理解运动至关重要。

13.An inertial 惯性的 measurement unit is used in various applications, including smartphones and drones.

惯性测量单元用于各种应用,包括智能手机和无人机。

作文

In the realm of physics, the concept of inertial (惯性的) frames of reference is fundamental to understanding motion. An inertial (惯性) frame is one in which an object either remains at rest or continues to move at a constant velocity unless acted upon by a net external force. This principle is encapsulated in Newton's first law of motion, which states that an object in motion tends to stay in motion, and an object at rest tends to stay at rest. This law highlights the natural tendency of objects to resist changes in their state of motion, a property we refer to as inertial (惯性). To better grasp the implications of inertial (惯性) frames, consider a train moving at a constant speed on a straight track. Passengers inside the train feel no force acting on them; they can freely move about and even toss a ball without any noticeable difference in behavior compared to if they were standing still on solid ground. The train serves as an inertial (惯性) frame because it is not accelerating. However, if the train were to suddenly brake, the passengers would lurch forward due to their inertial (惯性) tendency to continue moving at the same speed. This scenario illustrates how inertial (惯性) forces come into play when discussing motion in non-inertial (非惯性) frames, where acceleration occurs.Understanding inertial (惯性) frames is crucial not only in classical mechanics but also in modern physics, particularly in the theory of relativity. Einstein’s theory introduces the idea that the laws of physics are the same in all inertial (惯性) frames, leading to revolutionary insights about space and time. For instance, two observers moving at constant speeds relative to one another will measure different times and distances for the same events, yet both are correct within their own inertial (惯性) frames. This shows how inertial (惯性) concepts extend beyond simple motion to influence our understanding of the universe.In engineering and technology, the principles of inertial (惯性) motion are applied in various fields, including aerospace and automotive industries. For instance, gyroscopes and accelerometers rely on inertial (惯性) properties to navigate and stabilize vehicles. These devices help maintain balance and orientation, especially in environments where traditional references may be absent. Moreover, the concept of inertial (惯性) mass plays a significant role in determining how objects respond to forces. The greater the inertial (惯性) mass of an object, the more force is required to change its motion. This relationship is crucial in designing safe vehicles that can withstand collisions, as engineers must account for the inertial (惯性) properties of materials and structures.In conclusion, the term inertial (惯性) encompasses a broad range of applications and implications across various scientific disciplines. From the basic principles of motion described by Newton to the complexities of relativistic physics, inertial (惯性) frames provide a framework for understanding how objects behave in our universe. As we continue to explore and innovate, the principles of inertial (惯性) motion will undoubtedly remain at the core of our scientific endeavors, shaping our comprehension of the physical world around us.

在物理学领域,inertial(惯性)参考系的概念是理解运动的基础。inertial(惯性)框架是指一个物体要么保持静止,要么继续以恒定速度移动,除非受到净外力的作用。这个原则被牛顿第一运动定律所概括,该定律指出,运动中的物体倾向于保持运动,而静止的物体则倾向于保持静止。该定律强调了物体抵抗运动状态变化的自然倾向,这种特性我们称之为inertial(惯性)。为了更好地理解inertial(惯性)框架的含义,考虑一列在直轨道上以恒定速度行驶的火车。火车内的乘客感觉不到任何作用在他们身上的力;他们可以自由移动,甚至可以在没有明显行为差异的情况下投掷一个球,就像他们在坚实的地面上一样。火车作为一个inertial(惯性)框架,因为它没有加速。然而,如果火车突然刹车,乘客会由于他们的inertial(惯性)倾向而向前冲,因为他们会继续以相同的速度移动。这个场景说明了当讨论非inertial(非惯性)框架中的运动时,inertial(惯性)力是如何发挥作用的。理解inertial(惯性)框架不仅在经典力学中至关重要,而且在现代物理学中尤其如此,特别是在相对论理论中。爱因斯坦的理论引入了这样一个观点:物理定律在所有inertial(惯性)框架中都是相同的,从而导致了关于空间和时间的革命性见解。例如,相对运动的两个观察者将对同一事件测量不同的时间和距离,但两者在各自的inertial(惯性)框架内都是正确的。这表明,inertial(惯性)概念超越了简单的运动,影响着我们对宇宙的理解。在工程和技术领域,inertial(惯性)运动的原理应用于多个领域,包括航空航天和汽车工业。例如,陀螺仪和加速度计依赖于inertial(惯性)特性来导航和稳定车辆。这些设备有助于保持平衡和方向,特别是在传统参考可能缺失的环境中。此外,inertial(惯性)质量的概念在确定物体如何响应力方面也起着重要作用。物体的inertial(惯性)质量越大,改变其运动所需的力就越大。这种关系在设计能够承受碰撞的安全车辆时至关重要,因为工程师必须考虑材料和结构的inertial(惯性)特性。总之,inertial(惯性)一词涵盖了各种科学学科中的广泛应用和影响。从牛顿描述的基本运动原则到相对论物理学的复杂性,inertial(惯性)框架为理解我们宇宙中物体的行为提供了框架。随着我们继续探索和创新,inertial(惯性)运动的原则无疑将继续处于我们科学事业的核心,塑造我们对周围物理世界的理解。