microevolution

简明释义

[ˌmaɪkrəʊevəˈluːʃən][ˌmaɪkroˌevəˈlʊʃən;ˌmaɪkroˌiv

n. [进化] 微进化

英英释义

Microevolution refers to small-scale evolutionary changes that occur within a species or population over time, often due to mechanisms such as natural selection, genetic drift, and mutation.

微进化是指在物种或种群内部随着时间的推移发生的小规模进化变化,通常由于自然选择、遗传漂变和突变等机制引起。

单词用法

microevolution vs macroevolution

微进化与宏进化

examples of microevolution

微进化的例子

the process of microevolution

微进化的过程

impact of microevolution

微进化的影响

microevolutionary theory

微进化理论

microevolutionary mechanisms

微进化机制

microevolutionary processes

微进化过程

microevolutionary adaptations

微进化适应

同义词

adaptive evolution

适应性进化

Adaptive evolution occurs when species undergo changes to better fit their environment.

适应性进化发生在物种为了更好地适应环境而经历变化时。

population genetics

种群遗传学

Population genetics studies the genetic composition of populations and how it changes over time.

种群遗传学研究种群的遗传组成及其随时间变化的方式。

evolutionary change

进化变化

Evolutionary change can be observed in organisms adapting to new ecological niches.

进化变化可以在生物适应新的生态位时观察到。

反义词

macroevolution

大进化

Macroevolution refers to large-scale evolutionary changes that occur over long periods of time.

大进化是指在漫长时间内发生的大规模进化变化。

stasis

停滞

Stasis is a term used to describe a period of little or no evolutionary change in a species.

停滞是用来描述一个物种在很长一段时间内几乎没有进化变化的时期。

例句

1.Microevolution looks at changes within species overtime — changes that may be preludes to speciation, the origin of newspecies.

物种的微观进化随时都在发生——变化可能导致物种形成,这就是新物种的起源。

2.Objectives: to discuss the role of microevolution of Cryptococcus neoformans.

目的:探讨微观进化在新生隐球菌感染中的作用。

3.With the optimization criterion of least square error between the measured creep value and theoretical creep value, microevolution algorithm inverse the creep model parameters directly.

算法以实测蠕变值与理论计算值之间的最小二乘误差为优化准则函数,直接反演计算蠕变模型参数。

4.With the optimization criterion of least square error between the measured creep value and theoretical creep value, microevolution algorithm inverse the creep model parameters directly.

算法以实测蠕变值与理论计算值之间的最小二乘误差为优化准则函数,直接反演计算蠕变模型参数。

5.The idea that microevolution happens faster in warmer environments is not new.

在气候较为温暖的环境下微进化发生的速度更快并不是新观点。

6.Every species has its own "initial individual"; no kinship exists between the "initial individuals"; no microevolution can happen with every population under the "initial individual."

每一个物种都有自己的“起始源个体”;各“起始源个体”之间不存在亲缘的关联;每一个“起始源个体”下属的群体,不存在任何微进化。

7.Research on microevolution has shown how antibiotic resistance can develop in bacteria.

关于微进化的研究表明,抗生素耐药性如何在细菌中发展。

8.The concept of microevolution is essential for conservation biologists working to preserve endangered species.

对于致力于保护濒危物种的保护生物学家来说,微进化的概念至关重要。

9.Understanding microevolution can help scientists predict how species will adapt to changing environments.

理解微进化可以帮助科学家预测物种如何适应变化的环境。

10.Farmers often rely on microevolution to develop crops that are more resistant to pests.

农民常常依赖微进化来培育对害虫更具抵抗力的作物。

11.The study of microevolution reveals how small genetic changes can lead to significant differences in species over time.

微进化的研究揭示了小的遗传变化如何随着时间的推移导致物种间显著差异。

作文

Microevolution is a term used in the field of biology to describe small-scale evolutionary changes that occur within a species over time. These changes can be driven by various factors, including natural selection, genetic drift, mutation, and gene flow. Understanding microevolution (微进化) is crucial for comprehending how species adapt to their environments and how they evolve over generations.One significant aspect of microevolution (微进化) is its relationship with environmental changes. As conditions in an ecosystem fluctuate, species must adapt to survive. For instance, consider the peppered moth in England. Before the Industrial Revolution, the majority of these moths were light-colored, allowing them to blend in with the lichen-covered trees. However, as pollution darkened the trees, darker moths became more prevalent due to their increased survival rates against predators. This shift is a classic example of microevolution (微进化) in action, showcasing how small changes in traits can lead to significant differences in population dynamics over time.Another important factor influencing microevolution (微进化) is genetic drift, which refers to random changes in allele frequencies within a population. This phenomenon is particularly pronounced in small populations where chance events can have a substantial impact on the genetic makeup of the group. For example, if a natural disaster wipes out a portion of a small population, the surviving individuals may not represent the original genetic diversity. Over time, this can lead to a divergence from the original population, illustrating how microevolution (微进化) can occur independently of natural selection.Mutation is yet another driver of microevolution (微进化). Mutations are random changes in an organism's DNA that can introduce new traits into a population. While many mutations are neutral or harmful, some can provide advantages that enhance an organism's ability to survive and reproduce. For example, a mutation that allows a plant to withstand drought conditions can lead to a higher survival rate during dry spells, promoting the spread of that trait through the population. Thus, mutations play a critical role in the process of microevolution (微进化), contributing to the genetic variation necessary for adaptation.Gene flow, or the transfer of genetic material between populations, is another mechanism that influences microevolution (微进化). When individuals from different populations interbreed, they introduce new alleles into the gene pool, which can alter allele frequencies and promote genetic diversity. This exchange can help populations adapt to changing environments, as it increases the likelihood of beneficial traits being present in the population.In conclusion, microevolution (微进化) represents the subtle yet powerful changes that occur within species over time. By examining the mechanisms of natural selection, genetic drift, mutation, and gene flow, we can gain a deeper understanding of how organisms adapt to their environments. These small-scale evolutionary processes are essential for the survival and continuity of species, highlighting the intricate connections between organisms and their ecosystems. Therefore, studying microevolution (微进化) is vital for both biologists and conservationists as they work to preserve biodiversity in a rapidly changing world.

微进化是生物学领域中用于描述一个物种在时间上发生的小规模进化变化的术语。这些变化可以由多种因素驱动,包括自然选择、基因漂变、突变和基因流动。理解微进化对于理解物种如何适应其环境以及如何在世代间进化至关重要。微进化的一个重要方面是它与环境变化的关系。随着生态系统条件的波动,物种必须适应以生存。例如,考虑英格兰的胡椒蛾。在工业革命之前,这些蛾子的主要颜色是浅色,使它们能够与苔藓覆盖的树木融为一体。然而,随着污染使树木变黑,深色蛾子由于在捕食者面前的生存率提高而变得更为普遍。这种转变是微进化的经典例子,展示了特征的小变化如何导致种群动态的重大差异。影响微进化的另一个重要因素是基因漂变,这指的是种群内等位基因频率的随机变化。这种现象在小种群中尤为明显,因为偶然事件对群体的遗传构成可能产生重大影响。例如,如果自然灾害消灭了小种群的一部分,那么幸存的个体可能并不代表原始的遗传多样性。随着时间的推移,这可能导致与原始种群的分化,说明微进化可以独立于自然选择发生。突变是推动微进化的另一种因素。突变是生物DNA中的随机变化,可以将新特征引入一个种群。虽然许多突变是中性的或有害的,但一些突变可以提供优势,增强生物生存和繁殖的能力。例如,一种植物耐旱的突变可以在干旱期间提高生存率,从而促进该特征在种群中的传播。因此,突变在微进化过程中发挥着关键作用,为适应提供了必要的遗传变异。基因流动或不同种群之间遗传物质的转移也是影响微进化的机制。当来自不同种群的个体杂交时,它们会将新的等位基因引入基因库,这可能改变等位基因频率并促进遗传多样性。这种交换可以帮助种群适应不断变化的环境,因为它增加了有益特征出现在种群中的可能性。总之,微进化代表了物种随时间发生的微妙而强大的变化。通过研究自然选择、基因漂变、突变和基因流动的机制,我们可以更深入地理解生物如何适应其环境。这些小规模的进化过程对于物种的生存和延续至关重要,突显了生物与其生态系统之间的复杂联系。因此,研究微进化对于生物学家和保护主义者来说是至关重要的,因为他们努力在快速变化的世界中保护生物多样性。