permutation
简明释义
英[ˌpɜːmjuˈteɪʃ(ə)n]美[ˌpɜːrmjuˈteɪʃn]
n. [数] 排列;[数] 置换
复 数 p e r m u t a t i o n s
英英释义
单词用法
n. [数]排列组合 |
同义词
反义词
组合 | The combination of different elements can lead to innovative solutions. | 不同元素的组合可以带来创新的解决方案。 | |
排列 | The arrangement of the furniture in the room creates a cozy atmosphere. | 房间内家具的排列营造了一个舒适的氛围。 |
例句
1.The permutation module and the substitution module are designed.
给出了加密算法的置乱模块和替代模块;
2.A key problem of permutation filters is its too many parameters.
制约置换滤波器实用的关键是其参数数量过于庞大。
3.The routing algorithm for alternating group networks and shuffle-exchange permutation networks.
交错群网络与洗牌交换置换网络的路由算法。
4.Therefore constructions of permutation with high degree and high nonlinearity have become an important study problem.
因此构造出高次、非线性度高的置换是一个重要的研究问题。
5.This paper deals with orthodox semirings whose additive idempotents satisfy permutation identities.
本文主要研究加法幂等元满足置换等式的纯整半环。
6.But the orthomorphism permutation theory was discussed in binary field.
这些正形置换理论是在二元域上讨论的。
7.Therefore constructions of Boolean permutation with high degree and high nonlinearity have become an important study problem.
因此构造出高次、非线性度高的布尔置换是一个重要的研究问题。
8.The software can generate all permutations 排列 of a given set of numbers.
该软件可以生成给定数字集的所有排列。
9.In mathematics, a permutation 置换 refers to an arrangement of elements in a specific order.
在数学中,置换指的是元素以特定顺序的排列。
10.The chef experimented with different permutations of ingredients to create a unique dish.
厨师尝试了不同的配料排列组合来创造独特的菜肴。
11.The number of possible permutations of the letters in the word 'cat' is 6.
单词'cat'中字母的可能排列组合有6种。
12.Understanding the permutations 变换 of a dataset can reveal important patterns.
理解数据集的变换可以揭示重要模式。
作文
In the realm of mathematics and computer science, the concept of permutation plays a crucial role in understanding arrangements and combinations. A permutation refers to an arrangement of all or part of a set of objects, where the order of arrangement is significant. This concept can be applied in various fields, including statistics, cryptography, and even game theory. For instance, when we consider the letters in the word 'cat', the different ways we can arrange these letters—'cat', 'act', 'tac'—are all examples of permutation. The importance of permutation extends beyond mere academic interest; it has practical applications in everyday life. For example, when planning a trip with friends, the order in which you visit different locations can significantly impact your experience. If you choose to visit the museum before the park, the flow of your day might differ from visiting the park first. Here, the different sequences of activities represent permutation in action.Moreover, in the world of technology, algorithms often rely on permutations to solve complex problems efficiently. For instance, sorting algorithms utilize permutation principles to arrange data in a specific order, which is essential for quick data retrieval. Similarly, in cryptography, the security of information often depends on the permutation of keys used to encrypt messages. The more complex the permutation, the harder it is for unauthorized users to decipher the information.The mathematical formulation of permutation is also fascinating. The number of ways to arrange 'n' objects is given by 'n!', which is the factorial of 'n'. For example, if we have three objects, say A, B, and C, the total number of permutations would be 3! = 6, which includes ABC, ACB, BAC, BCA, CAB, and CBA. This factorial growth illustrates how quickly the number of permutations can increase with the addition of more elements, making it a rich topic for exploration in combinatorial mathematics.In conclusion, the concept of permutation is not merely a theoretical construct but a practical tool that influences various aspects of our lives. Whether we are arranging a set of numbers, planning an itinerary, or developing algorithms, understanding permutation enhances our problem-solving skills and analytical thinking. As we continue to encounter situations where order matters, appreciating the significance of permutation will undoubtedly enrich our comprehension of both simple and complex systems.
在数学和计算机科学的领域中,排列的概念在理解排列和组合方面起着至关重要的作用。排列是指一组对象的全部或部分的排列,其中排列的顺序是重要的。这个概念可以应用于多个领域,包括统计学、密码学,甚至博弈论。例如,当我们考虑单词“cat”中的字母时,我们可以排列这些字母的不同方式——“cat”、“act”、“tac”——都是排列的例子。排列的重要性超越了学术兴趣,它在日常生活中也有实际应用。例如,当与朋友计划一次旅行时,您访问不同地点的顺序可能会显著影响您的体验。如果您选择先参观博物馆,然后再去公园,那么您的一天的流程可能与先去公园不同。在这里,不同活动的顺序代表了排列的实际应用。此外,在技术世界中,算法通常依赖于排列来高效解决复杂问题。例如,排序算法利用排列原理将数据按特定顺序排列,这对于快速数据检索至关重要。同样,在密码学中,信息的安全性往往取决于用于加密消息的密钥的排列。排列越复杂,未授权用户解密信息的难度就越大。排列的数学公式也很有趣。'n'个对象的排列方式总数由'n!'给出,即'n'的阶乘。例如,如果我们有三个对象,假设是A、B和C,则总的排列数量为3! = 6,包括ABC、ACB、BAC、BCA、CAB和CBA。这种阶乘增长说明了随着更多元素的添加,排列的数量如何迅速增加,使其成为组合数学中一个丰富的探索主题。总之,排列的概念不仅仅是一个理论构造,而是一个影响我们生活各个方面的实用工具。无论我们是在排列一组数字、规划行程,还是开发算法,理解排列都能增强我们的解决问题能力和分析思维。随着我们继续遇到顺序重要的情况,欣赏排列的意义无疑会丰富我们对简单和复杂系统的理解。