perpendicular
简明释义
英[ˌpɜːpənˈdɪkjələ(r)]美[ˌpɜːrpənˈdɪkjələr]
adj. 垂直的,直立的,成直角的;(14、15世纪英格兰教堂)垂直式装饰风格的;(带斜面的物体)陡峭的,陡立的
n. 垂线,垂直线,垂直姿态
复 数 p e r p e n d i c u l a r s
英英释义
At an angle of 90 degrees to a given line, plane, or surface. | 与给定的线、平面或表面成90度角。 |
Relating to or denoting the relationship between two lines that meet at a right angle. | 与两个相交于直角的线之间的关系有关或表示。 |
单词用法
垂直线 | |
垂直平分线 | |
与...垂直 | |
垂直距离 | |
垂直角 | |
垂直平面 |
同义词
垂直的 | 墙壁与地面垂直。 | ||
直立的 | 她直立着,准备发表演讲。 | ||
正交的 | In mathematics, two lines are orthogonal if they intersect at a right angle. | 在数学中,如果两条线以直角相交,则它们是正交的。 | |
直立的 | 杆子直立在地面上。 |
反义词
平行 | 这两条线是平行的。 | ||
倾斜的 | 屋顶以倾斜的角度倾斜。 |
例句
1.The lighter should sit perpendicular to the neck of the bottle.
打火机应该与瓶颈垂直。
2.We have seen that the gradient is perpendicular to the level surface.
我们已经知道,梯度是垂直于等值面的。
3.Then you know that the gradient of g is perpendicular to the level surface.
那么就知道了g的梯度,是垂直等值面的。
4.Do you mean how do I know that it is perpendicular to a level curve?
你想问的是,我如何知道它是和等高线垂直的吗?
5.So, how do we find this vector that's perpendicular to the plane?
所以,我们要怎么找,垂直于这个平面的向量?
6.The wall is a little out of the perpendicular.
墙壁有点倾斜。
7.You might be able to draw curves that are perpendicular to it.
或许你可以画出每点都垂直于向量场的曲线。
8.These two vectors are perpendicular exactly when their dot product is zero.
当点乘的数量积为零时,这两个向量垂直。
9.The two walls meet at a perpendicular 垂直的 angle.
这两面墙在一个垂直的角度相交。
10.To construct a perpendicular 垂直的 line, you can use a compass and straightedge.
要构造一条垂直的线,可以使用圆规和直尺。
11.In geometry, a line is perpendicular 垂直的 to another line if it meets it at a right angle.
在几何学中,一条线如果与另一条线在直角处相交,则称其为垂直的。
12.The architect designed the building with perpendicular 垂直的 columns for structural integrity.
建筑师设计了这座建筑,采用垂直的柱子以确保结构的完整性。
13.The teacher explained how to draw a perpendicular 垂直的 bisector of a line segment.
老师解释了如何绘制一条线段的垂直的平分线。
作文
In the realm of geometry, the concept of being perpendicular is fundamental. It describes the relationship between two lines that intersect at a right angle, which is an angle measuring exactly 90 degrees. Understanding this concept is crucial not only in mathematics but also in various real-world applications such as architecture and engineering. For instance, when constructing a building, ensuring that the walls are perpendicular to the floor is essential for structural integrity. If the walls are not perpendicular, the building could become unstable, leading to potential hazards. Moreover, the use of perpendicular lines can be observed in art and design. Artists often utilize perpendicular lines to create depth and perspective in their work. By positioning elements at perpendicular angles, they can guide the viewer’s eye and enhance the overall composition of the piece. This technique is not limited to two-dimensional art; it also applies to three-dimensional sculptures where the balance and alignment of perpendicular components can significantly affect the piece's visual impact.In addition to its practical applications, the idea of perpendicular relationships extends into other fields such as physics. In mechanics, forces can be described as acting at perpendicular angles to one another, which can simplify calculations and help in understanding motion. For example, when analyzing the forces acting on an object, if one force is applied horizontally and another vertically, these forces are perpendicular. This relationship allows us to use the Pythagorean theorem to calculate the resultant force acting on the object.Furthermore, the term perpendicular can be metaphorically applied in discussions about life and relationships. Just as lines can be perpendicular in geometry, so too can our paths intersect with others in meaningful ways. When individuals come together at perpendicular angles in their lives, they can create new opportunities and perspectives. This intersection can lead to collaboration and innovation, much like how perpendicular lines in a graph can define a coordinate system that allows for the plotting of complex data.In conclusion, the term perpendicular encompasses a variety of meanings across different disciplines. Whether in mathematics, art, physics, or even in our personal lives, the concept of perpendicular relationships highlights the importance of angles and intersections. By recognizing and applying the principle of perpendicular lines, we can enhance our understanding of the world around us and improve our problem-solving skills. The next time you encounter perpendicular lines, whether in a classroom, a construction site, or a piece of art, take a moment to appreciate the significance of this geometric relationship and how it influences various aspects of our lives.
在几何学领域,垂直的概念是基础。它描述了两条线在一个直角相交的关系,该角度恰好为90度。理解这个概念不仅对数学至关重要,而且对于建筑和工程等各种现实世界的应用也非常重要。例如,在建造建筑时,确保墙壁与地面保持垂直是结构完整性的关键。如果墙壁不是垂直的,建筑可能会变得不稳定,从而导致潜在的危险。此外,垂直线的使用可以在艺术和设计中观察到。艺术家经常利用垂直线来在他们的作品中创造深度和透视。通过将元素置于垂直角度,他们可以引导观众的视线,并增强作品的整体构图。这种技巧不仅限于二维艺术;它也适用于三维雕塑,其中垂直组件的平衡和对齐可以显著影响作品的视觉冲击。除了其实际应用外,垂直关系的概念还扩展到物理等其他领域。在力学中,力可以描述为互相作用于垂直角度,这可以简化计算并帮助理解运动。例如,在分析作用于物体的力时,如果一个力是水平施加的,而另一个力是垂直的,那么这些力就是垂直的。这种关系使我们能够使用毕达哥拉斯定理来计算作用于物体的合力。此外,垂直一词可以在生活和人际关系的讨论中隐喻性地应用。正如几何中的线条可以是垂直的,我们的道路在生活中也可以以有意义的方式与他人交叉。当个人的生活在垂直角度上交汇时,他们可以创造新的机会和视角。这种交汇可以导致合作和创新,就像在图表中垂直的线条可以定义一个坐标系,使复杂数据的绘制成为可能。总之,垂直一词在不同学科中包含多种含义。无论是在数学、艺术、物理,还是在我们个人生活中,垂直关系的概念突出了角度和交叉的重要性。通过识别和应用垂直线的原理,我们可以增强对周围世界的理解,并提高解决问题的能力。下次当你在教室、建筑工地或艺术作品中遇到垂直线时,花一点时间欣赏这一几何关系的意义,以及它如何影响我们生活的各个方面。