prokaryotic

简明释义

[prəʊˌkærɪˈɒtɪk][proʊkeriˈɑːtɪk]

adj. 原核的

英英释义

Relating to prokaryotes, which are unicellular organisms that lack a membrane-bound nucleus and organelles.

与原核生物有关的,这些生物是单细胞生物,缺乏膜结合的细胞核和细胞器。

单词用法

prokaryotic bacteria

原核细菌

prokaryotic evolution

原核进化

prokaryotic metabolism

原核代谢

prokaryotic dna

原核DNA

prokaryotic vs eukaryotic

原核与真核

prokaryotic and eukaryotic cells

原核细胞和真核细胞

prokaryotic life forms

原核生命形式

prokaryotic classification

原核分类

同义词

unicellular

单细胞的

Prokaryotic organisms are typically unicellular.

原核生物通常是单细胞的。

bacterial

细菌的

The study of prokaryotic cells often involves bacterial cultures.

原核细胞的研究通常涉及细菌培养。

反义词

eukaryotic

真核的

Eukaryotic cells have a nucleus and membrane-bound organelles.

真核细胞具有细胞核和膜结合的细胞器。

例句

1.Objective To construct the prokaryotic expression vector of the sporozoite surface antigen gene of Eimeria tenella GZ strain and expression in Escherichia coli.

目的构建柔嫩艾美耳球虫子孢子表面抗原原核表达载体,并且在大肠杆菌中表达。

2.It is the control center of living activity and the hallmark to distinguish eucaryotic cells from prokaryotic ones.

它还是生命活动的控制中心,也是真核细胞和原核细胞的最大区别。

3.To clone gene of the TRAIL and construct its prokaryotic expression vector.

目的克隆人TRAIL基因,构建其原核表达载体。

4.Simple Sequence Repeat is ubiquitous in prokaryotic and eukaryotic genomes.

简单重复序列广泛分布于原核和真核基因组。

5.In this study, the Aer toxin gene was cloned and expressed in prokaryotic system and the antigenicity of its recombinant protein was analyzed.

该领域国外研究热点在嗜水气单胞菌毒素的基因组结构、相关毒力因子基因克隆和序列比较以及毒素蛋白的表达和致病机理等方面。

6.So human CT antigen NY-ESO-1 could be successfully expressed in prokaryotic expression system.

本研究成功利用原核表达系统实现了对CT抗原NY-ESO-1的可溶性表达。

7.Methods: PCR, gene cloning and successive sub cloning, DNA sequencing, prokaryotic temperature induction, etc. were used.

方法:采用PCR,克隆及连续亚克隆,序列分析,原核温度诱导表达等方法。

8.Catalase generally exists in the prokaryotic and eukaryotic organisms for anti-oxidation.

过氧化氢酶普遍存在于原核和真核生物,具有抗氧化作用。

9.AIM: to clone human MAGE 3 gene, to induce its prokaryotic expression and to purify the protein.

目的:克隆人MAGE3基因并进行原核表达和分离纯化。

10.The main difference between prokaryotic 原核生物 and eukaryotic cells is the absence of a nucleus in prokaryotic 原核生物 cells.

原核生物prokaryotic和真核细胞的主要区别在于原核生物prokaryotic细胞中缺乏细胞核。

11.Many antibiotics target prokaryotic 原核生物 cells, making them effective against bacterial infections.

许多抗生素针对prokaryotic 原核生物细胞,使它们对细菌感染有效。

12.Bacteria are classified as prokaryotic 原核生物 organisms due to their simple cell structure.

细菌被归类为prokaryotic 原核生物,因为它们的细胞结构简单。

13.The study of prokaryotic 原核生物 genetics helps us understand the basics of heredity.

prokaryotic 原核生物遗传学的研究帮助我们理解遗传的基础。

14.Research on prokaryotic 原核生物 organisms has revealed their ability to survive in extreme environments.

prokaryotic 原核生物的研究揭示了它们在极端环境中生存的能力。

作文

The study of life begins with understanding the basic building blocks that constitute all living organisms. Among these, one of the most fundamental classifications is the distinction between prokaryotic and eukaryotic cells. Prokaryotic cells, or 原核细胞, are often regarded as the simplest forms of life. They are unicellular organisms that lack a nucleus and other membrane-bound organelles. This simplicity is not a limitation; rather, it allows them to thrive in a variety of environments, from deep-sea vents to the human gut.Prokaryotic organisms include bacteria and archaea, two domains of life that are essential to the biosphere. Bacteria, for instance, play a crucial role in nutrient cycling, decomposition, and even in human health. The human microbiome, which consists of trillions of prokaryotic cells, is vital for digestion, immunity, and overall well-being. Understanding prokaryotic cells is therefore key to many fields, including medicine, environmental science, and biotechnology.One of the most fascinating aspects of prokaryotic cells is their genetic structure. Unlike eukaryotic cells, which have linear DNA organized into chromosomes, prokaryotic cells typically contain a single, circular strand of DNA located in a region called the nucleoid. This unique arrangement allows for rapid replication and adaptability, making prokaryotes incredibly resilient. For example, they can exchange genetic material through processes such as conjugation, transformation, and transduction, leading to rapid evolution and the emergence of antibiotic resistance.Moreover, prokaryotic cells exhibit a remarkable diversity in their metabolic pathways. Some are photosynthetic, converting sunlight into energy, while others are chemosynthetic, deriving energy from chemical reactions. This metabolic versatility enables prokaryotic organisms to inhabit extreme environments, such as hot springs, salt lakes, and acidic waters. Their ability to adapt to harsh conditions has made them a focus of research in astrobiology, as scientists explore the possibility of life on other planets.In terms of reproduction, prokaryotic cells primarily reproduce asexually through binary fission, a process that allows them to multiply rapidly under favorable conditions. This rapid growth can lead to exponential increases in population size, which is why bacterial infections can escalate quickly. Understanding the dynamics of prokaryotic reproduction is essential for developing effective treatments for bacterial diseases.Despite their simplicity, prokaryotic cells have complex interactions with their environment and other organisms. For instance, some bacteria form symbiotic relationships with plants, aiding in nutrient absorption and enhancing growth. Others are pathogenic, causing diseases in humans, animals, and plants. The dual nature of prokaryotic cells as both beneficial and harmful highlights the importance of studying these microorganisms.In conclusion, prokaryotic cells, or 原核细胞, are fundamental to our understanding of life on Earth. Their simplicity belies their complexity and importance in ecological systems, human health, and biotechnological applications. As we continue to explore the microbial world, the insights gained from studying prokaryotic organisms will undoubtedly lead to advancements in science and medicine. Embracing the knowledge of prokaryotic life forms is essential for addressing global challenges, from antibiotic resistance to environmental sustainability.

生命的研究始于理解构成所有生物体的基本构建块。在这些构建块中,最基本的分类之一是原核细胞和真核细胞之间的区别。原核细胞通常被视为生命中最简单的形式。它们是单细胞生物,缺乏细胞核和其他膜结合的细胞器。这种简单性并不是一种限制;相反,它使它们能够在多种环境中生存,从深海热泉到人类肠道。原核生物包括细菌和古菌,这两个生命域对于生物圈至关重要。例如,细菌在营养循环、分解和甚至人类健康方面发挥着关键作用。人类微生物组由数万亿个原核细胞组成,对消化、免疫和整体健康至关重要。因此,理解原核细胞对许多领域至关重要,包括医学、环境科学和生物技术。原核细胞最迷人的一个方面是它们的遗传结构。与线性DNA组织成染色体的真核细胞不同,原核细胞通常包含一条位于称为核糖体区域的单一圆形DNA链。这种独特的排列使得快速复制和适应成为可能,使原核细胞极具韧性。例如,它们可以通过接合、转化和转导等过程交换遗传物质,从而导致快速进化和抗生素耐药性的出现。此外,原核细胞在其代谢途径中表现出显著的多样性。有些是光合的,将阳光转化为能量,而另一些则是化能合成的,从化学反应中获取能量。这种代谢的多样性使得原核生物能够栖息在极端环境中,例如热泉、盐湖和酸性水域。它们适应恶劣条件的能力使它们成为天体生物学研究的重点,因为科学家们探索其他行星上生命的可能性。在繁殖方面,原核细胞主要通过二分裂无性繁殖,这一过程使它们在有利条件下迅速繁殖。这种快速增长可能导致种群数量的指数增加,这就是为什么细菌感染会迅速升级。理解原核细胞繁殖的动态对于开发有效的细菌疾病治疗方法至关重要。尽管它们很简单,原核细胞与环境和其他生物体之间的复杂相互作用也很显著。例如,一些细菌与植物形成共生关系,帮助吸收营养并促进生长。其他细菌则是病原体,导致人类、动物和植物的疾病。原核细胞作为有益和有害生物的双重性质突显了研究这些微生物的重要性。总之,原核细胞是我们理解地球生命的基础。它们的简单性掩盖了它们在生态系统、人类健康和生物技术应用中的复杂性和重要性。随着我们继续探索微生物世界,从研究原核生物中获得的见解无疑将推动科学和医学的发展。拥抱对原核生物的知识对于解决全球挑战至关重要,从抗生素耐药性到环境可持续性。