dielectrics
简明释义
英[ˌdaɪɪˈlektrɪks]美[ˌdaɪɪˈlektrɪks]
n. 电介质(dielectric 的复数)
英英释义
Dielectrics are insulating materials that do not conduct electricity but can support an electric field, allowing them to store electrical energy. | 电介质是绝缘材料,不导电,但能支持电场,从而使其能够储存电能。 |
单词用法
介电常数;电容率 | |
[化]介电损耗 |
同义词
绝缘体 | Dielectrics are often used in capacitors to store electrical energy. | 介质通常用于电容器中储存电能。 |
反义词
导体 | 铜是良好的电导体。 | ||
半导体 | Silicon is commonly used as a semiconductor in electronic devices. | 硅通常用作电子设备中的半导体。 |
例句
1.Based on that, a comparison experiment is performed to study the kinetic processes of trap creation in solid organic dielectrics under strong electrical strength.
在此基础上提出一种比较实验法,研究强电场作用下介质中产生新陷阱的动力学过程。
2.Experimental results illustrate that the testing system meets the needs of ac characteristic test for non-linear dielectrics.
实验结果表明,该测试系统能满足非线性电介质交流特性实验测试的要求。
3.The synthesis, structure, properties and process interaction of low k dielectrics are reviewed. Characterization techniques for low k dielectric films are summarized.
综述了低介电常数介质薄膜的制备方法、结构与性能表征、工艺兼容性等领域的最新进展。
4.For the typical high energy electron spectrum in outer radiation belt, the charging time for dielectrics is of the order of an hour.
对于典型的外辐射带高能电子能谱情况,介质的充电时间为小时量级。
5.The MOSFET gate currents of high k gate dielectrics due to direct tunneling are investigated by using a new direct tunneling current model developed.
提出了包括有限势垒高度下反型层量子化效应以及多晶硅耗尽效应在内的直接隧穿电流模型。
6.This article introduces a method to measure the relative dielectric constant of liquid dielectrics in physical experiments, with a special capacitor made by ourself.
通过自制的专用电容器,采用电容测量仪测电容的方法,在物理实验中开设液体电介质的相对介电常数的测量实验。
7.The low sintering and low dielectrics substrate materials and their properties, and the organic additives for tape casting slurry are compared and analyzed.
对目前已研究和使用过的低介电常数和低烧结温度基板材料及综合性能,流延浆料有机添加剂进行了对比分析。
8.Polymer nanocomposites are promising as near-future dielectrics and electrical insulation from the viewpoint of their inherent excellent properties.
聚合物基纳米复合材料作为电介质和电气绝缘材料在电力电子技术领域有着广泛的应用前景。
9.The testing of insulation resistance, dielectrics voltage-resistance and contact resistance is essential for the connector to reliably operate.
绝缘电阻、介质耐压和接触电阻检验是保证电连接器正常可靠地工作的最基本的常规检验项目。
10.The study of dielectrics 电介质 is essential for understanding how capacitors work.
对电介质的研究对于理解电容器的工作原理至关重要。
11.The insulating properties of dielectrics 电介质 are crucial in preventing electrical leakage.
在防止电泄漏方面,电介质的绝缘特性至关重要。
12.Many modern electronics rely on advanced dielectrics 电介质 to improve efficiency.
许多现代电子产品依赖于先进的电介质来提高效率。
13.In high voltage applications, the choice of dielectrics 电介质 can greatly affect the performance and safety of electrical equipment.
在高压应用中,电介质的选择会极大影响电气设备的性能和安全性。
14.Researchers are exploring new materials for dielectrics 电介质 to enhance energy storage capabilities.
研究人员正在探索新材料作为电介质以增强能量储存能力。
作文
Dielectrics play a crucial role in modern electronics and electrical engineering. A dielectric (绝缘体) is a material that does not conduct electricity but can support an electric field. This unique property makes dielectrics essential for various applications, including capacitors, insulators, and even in the design of circuit boards. Understanding how dielectrics function can help us appreciate their significance in technology today.In simple terms, when an electric field is applied to a dielectric, it becomes polarized. This means that the positive and negative charges within the material shift slightly in response to the electric field. The ability of a dielectric to be polarized is quantified by its dielectric constant, a measure of how much electric field can be stored in the material compared to vacuum. Materials with high dielectric constants are particularly useful in applications where space is limited, as they can store more energy in a smaller volume.One of the most common uses of dielectrics is in capacitors. Capacitors are essential components in electronic circuits, allowing for the storage and release of electrical energy. The dielectric material between the plates of a capacitor determines its capacitance, influencing how much charge it can hold. For instance, ceramic, polyester, and tantalum are some materials used as dielectrics in capacitors, each offering different properties suitable for various applications.Another important application of dielectrics is in insulation. Electrical insulation is vital for ensuring safety and efficiency in electrical systems. Dielectric materials prevent unwanted flow of current, protecting both devices and users from electric shocks. Common insulating materials include rubber, glass, and certain plastics, all of which possess excellent dielectric properties.The study of dielectrics also extends to high-frequency applications, such as radio frequency (RF) and microwave technologies. In these cases, the performance of dielectrics can significantly affect signal integrity and transmission efficiency. Engineers must carefully select dielectric materials that minimize losses and maintain signal quality, especially in communication devices and radar systems.Furthermore, advancements in materials science have led to the development of new dielectric materials with enhanced properties. For instance, researchers are exploring organic dielectrics for flexible electronics, which could revolutionize the way we use devices like smartphones and wearable technology. This exploration highlights the ongoing importance of dielectrics in pushing the boundaries of innovation in electronics.In conclusion, dielectrics are fundamental to the functioning of many electronic devices and systems. Their ability to store electric energy and act as insulators makes them indispensable in electrical engineering. As technology continues to evolve, the study and development of new dielectric materials will remain a key area of research, ensuring that we can meet the demands of future innovations. Understanding dielectrics not only enhances our knowledge of electrical systems but also paves the way for advancements in technology that can improve our daily lives.
绝缘体在现代电子和电气工程中发挥着至关重要的作用。dielectric(绝缘体)是一种不导电但可以支持电场的材料。这种独特的性质使得dielectrics在各种应用中至关重要,包括电容器、绝缘体,甚至电路板的设计。理解dielectrics的功能可以帮助我们欣赏它们在当今技术中的重要性。简单来说,当施加电场于dielectric时,它会变得极化。这意味着材料内部的正负电荷会稍微移动,以响应电场。dielectric被极化的能力通过其介电常数来量化,这是一个衡量材料能够储存多少电场相对于真空的指标。具有高介电常数的材料在空间有限的应用中尤为有用,因为它们可以在更小的体积内储存更多的能量。dielectrics最常见的用途之一是电容器。电容器是电子电路中的基本组件,允许存储和释放电能。电容器板之间的dielectric材料决定了其电容,影响其可以储存多少电荷。例如,陶瓷、聚酯和钽是一些用作电容器的dielectrics材料,每种材料都提供不同的属性,适合各种应用。dielectrics的另一个重要应用是绝缘。电气绝缘对确保电气系统的安全性和效率至关重要。dielectric材料防止不必要的电流流动,保护设备和用户免受电击。常见的绝缘材料包括橡胶、玻璃和某些塑料,这些材料都具有优良的dielectric特性。dielectrics的研究还扩展到高频应用,如射频(RF)和微波技术。在这些情况下,dielectrics的性能可以显著影响信号完整性和传输效率。工程师必须仔细选择dielectric材料,以最小化损耗并保持信号质量,特别是在通信设备和雷达系统中。此外,材料科学的进步导致新型dielectric材料的开发,这些材料具有增强的特性。例如,研究人员正在探索用于柔性电子的有机dielectrics,这可能会彻底改变我们使用智能手机和可穿戴技术的方式。这一探索凸显了dielectrics在推动电子创新边界中的持续重要性。总之,dielectrics是许多电子设备和系统正常运作的基础。它们储存电能和作为绝缘体的能力使它们在电气工程中不可或缺。随着技术的不断发展,新dielectric材料的研究和开发将继续成为研究的关键领域,确保我们能够满足未来创新的需求。理解dielectrics不仅增强了我们对电气系统的知识,还为改善我们日常生活的技术进步铺平了道路。