photoelectric

简明释义

[ˌfəʊtəʊɪˈlektrɪk][ˌfoʊtoʊɪˈlektrɪk]

adj. [电子] 光电的

英英释义

Relating to the generation of electric current or the effect of light on the movement of electrons.

与电流的产生或光对电子运动的影响相关。

Describing a phenomenon in which light causes the emission of electrons from a material.

描述一种现象,其中光导致材料中电子的发射。

单词用法

photoelectric sensor

光电遥感器,光电传感器

photoelectric switch

光电开关;光电式开关掣

同义词

photovoltaic

光伏的

Photovoltaic cells convert sunlight into electricity.

光伏电池将阳光转化为电能。

photoresponsive

光响应的

Photoresponsive materials change their properties when exposed to light.

光响应材料在光照下会改变其性质。

photoinduced

光诱导的

Photoinduced reactions are essential in many chemical processes.

光诱导反应在许多化学过程中是必不可少的。

反义词

non-photoelectric

非光电的

Non-photoelectric sensors are often used in applications where light interference is a concern.

非光电传感器通常用于光干扰是一个问题的应用中。

thermal

热的

Thermal imaging cameras detect heat rather than light.

热成像摄像机检测的是热量而不是光。

例句

1.High speed photoelectric sensor.

高速光电传感器。

2.With high photoelectric rate. The diode side-pump laser source is good stability and long life time.

电光转换效率更高,功耗低,输出激光能量稳定。半导体侧面泵浦激光器使用寿命更长。

3.So, starting back with the photoelectric effect -- yes.

好了,开始光电效应的话题,好。

4.Early experiments on the photoelectric effect had not produced consistent results.

有关光电效应的早期实验,并未取得协调一致的结果。

5.Then the water into the photoelectric colorimetry seat, instrument by comparing the color depth and ion concentration value.

然后将此水样放入光电比色座内,仪器会通过比较颜色深浅从而得到离子浓度值。

6.The electrical connection in the photoelectric elevator involves electronics.

在光电升降机(电梯)中的电路包括了电子学。

7.Bar-code readers are photoelectric scanners that translate the bar code symbols into digital code.

条形码读出器就是光电子扫描仪,它们可以把条形码转换为数字代码。

8.The electrical connection in the photoelectric elevator involves electronics.

光电升降机内的电气连接涉及到电子学。

9.It combines computer technology with multichannel photoelectric detection system with spectral sensitivity of CIE standard observers curve.

它采用微机技术和具有CIE标准观察者曲线光谱响应的多通道光电检测系统。

10.The photoelectric effect is essential in understanding how solar panels generate electricity.

光电效应对于理解太阳能电池板如何发电至关重要。

11.Researchers are exploring new photoelectric materials to improve the efficiency of solar energy conversion.

研究人员正在探索新的光电材料,以提高太阳能转化的效率。

12.In physics, the photoelectric effect demonstrates the particle nature of light.

在物理学中,光电效应展示了光的粒子特性。

13.Many modern cameras utilize photoelectric sensors to capture images with high precision.

许多现代相机利用光电传感器以高精度捕捉图像。

14.The photoelectric cells in streetlights help conserve energy by turning on and off automatically.

街灯中的光电电池通过自动开关来节约能源。

作文

The concept of photoelectric effects has revolutionized the way we harness energy from natural sources. The term photoelectric refers to the phenomenon where light, particularly photons, is used to generate electricity. This process forms the basis of many modern technologies, including solar panels and various types of sensors. Understanding the photoelectric effect is crucial for anyone interested in the fields of physics, engineering, or renewable energy. To delve deeper into the photoelectric effect, it is essential to consider its historical context. Albert Einstein was awarded the Nobel Prize in Physics in 1921 for his explanation of the photoelectric effect, which demonstrated that light can behave as both a wave and a particle. This dual nature of light is fundamental in understanding how photoelectric devices operate. When light strikes a material, it can transfer energy to electrons within that material. If the energy transferred is sufficient, these electrons can escape from the surface, generating an electric current. In practical applications, photoelectric cells are widely used in solar panels, which convert sunlight into electricity. The efficiency of these cells depends on the materials used and their ability to absorb photons effectively. For instance, silicon is a common material in photoelectric cells because it has suitable properties for absorbing light and converting it into electrical energy. As technology advances, researchers are exploring new materials, such as perovskite, to enhance the efficiency of photoelectric devices further. Beyond energy generation, the photoelectric effect plays a significant role in various sensors and imaging technologies. For example, photoelectric sensors are commonly used in automatic doors, security systems, and even in medical devices. These sensors detect changes in light intensity and respond accordingly, showcasing the versatility of photoelectric technology in everyday applications. Moreover, the importance of the photoelectric effect extends to scientific research. In laboratories, photoelectric spectroscopy is a technique used to analyze the composition of materials by studying how they interact with light. This method provides valuable insights into the electronic structure of substances, aiding advancements in chemistry and materials science. As we move towards a more sustainable future, the role of photoelectric technology will only continue to grow. With the increasing demand for renewable energy sources, innovations in photoelectric systems will be critical in addressing global energy challenges. Governments and industries worldwide are investing heavily in research and development to improve the efficiency and affordability of photoelectric technologies. In conclusion, the photoelectric effect is a fascinating and essential concept that underpins many modern technologies. From solar energy to sensing devices, the applications of photoelectric technology are vast and varied. As we strive for a more sustainable and technologically advanced world, understanding and improving photoelectric systems will remain a priority in scientific and engineering communities. The potential for innovation in this field is immense, and it promises to shape the future of energy and technology for generations to come.

光电效应的概念彻底改变了我们利用自然资源的方式。术语“光电”指的是光(尤其是光子)用于产生电力的现象。这个过程构成了许多现代技术的基础,包括太阳能电池板和各种类型的传感器。理解光电效应对于任何对物理学、工程学或可再生能源感兴趣的人来说都是至关重要的。深入探讨光电效应,有必要考虑其历史背景。阿尔伯特·爱因斯坦因解释光电效应而获得1921年的诺贝尔物理学奖,该效应证明了光可以同时表现为波和粒子。这种光的双重性质对于理解光电设备的运行至关重要。当光照射到材料上时,它可以将能量转移给该材料中的电子。如果转移的能量足够,这些电子就可以从表面逃逸,产生电流。在实际应用中,光电电池广泛应用于太阳能电池板,将阳光转化为电力。这些电池的效率取决于所用材料及其有效吸收光子的能力。例如,硅是光电电池中常用的材料,因为它具有适合吸收光并将其转化为电能的特性。随着技术的进步,研究人员正在探索新材料,如钙钛矿,以进一步提高光电设备的效率。除了能源生成,光电效应在各种传感器和成像技术中也发挥着重要作用。例如,光电传感器通常用于自动门、安全系统,甚至医疗设备。这些传感器检测光强度的变化并作出相应反应,展示了光电技术在日常应用中的多样性。此外,光电效应的重要性还延伸到科学研究。在实验室中,光电光谱法是一种通过研究材料与光的相互作用来分析材料成分的技术。这种方法提供了有关物质电子结构的宝贵见解,有助于化学和材料科学的进步。随着我们朝着更可持续的未来迈进,光电技术的角色只会继续增长。随着对可再生能源来源需求的增加,光电系统的创新将在应对全球能源挑战中至关重要。全球各国政府和行业正在大量投资于研发,以提高光电技术的效率和可负担性。总之,光电效应是一个迷人且重要的概念,支撑着许多现代技术。从太阳能到传感设备,光电技术的应用广泛而多样。随着我们努力实现一个更可持续和技术先进的世界,理解和改善光电系统将始终是科学和工程界的优先事项。该领域的创新潜力巨大,承诺将在未来几代中塑造能源和技术的未来。