theta
简明释义
n. 希腊语字母表中第八个字母
n. (Theta)(美、法、印)台达(人名)
英英释义
单词用法
Theta波 | |
Theta表示法 | |
Theta衰减 | |
Theta函数 | |
Theta分布 | |
Theta风险 |
同义词
反义词
阿尔法 | 阿尔法男性领导着这个群体。 | ||
欧米伽 | 最终,一切都归于欧米伽。 |
例句
1.With the chain rule, gives me a theta dot.
根据链式法则,我得到θ点。
2.See, this is the same formula as the one over there, just dividing everything by partial theta and with subscripts little a.
这和那边的公式是一样的,只是通过偏θ和下标a把所有的事情分开,如果对你来说用这种方法更容易理解。
3.Since there is no acceleration in the y direction, the normal force must be also mg cosine theta.
既然在y方向上,没有加速度,法向力也等于mgcosθ
4.So, it is possible to treat -1 as a constant input whose weight, theta, is adjusted in learning, or, to use the technical term, training.
所以,我们可以把-1看成一个常量输入,它的权系数theta在学习(或者用技术术语,称为 培训)的过程中进行调整。
5.So, we set this to be zero. Theta, well, we are very happy because we want to express things in terms of theta.
所以我们令它等于零,很好,我们很高兴,因为我们就是想用θ来表示。
6.So we get 2gl times the sine of theta mu k*cos 2 and the whole thing to the power one-half.
所以我们得到2gl*sinθ,θ,minus,mu,of,k,times,the,cosine,of,theta,所有项除以。
7.The two flips out, which eats up this two, so I get mg R and then I get a theta.
这两个没用了,被抵消,所以得到mgR和θ
8.R Now, v equals omega R, R so that equals theta dot times R.
现在v等于ω,即等于θ点乘以。
9.The threshold is called theta.
阈值称为theta。
10.In finance, theta measures the sensitivity of the value of an option to the passage of time.
在金融中,theta衡量期权价值对时间流逝的敏感性。
11.In trigonometry, the sine function can be expressed as sin(theta).
在三角学中,正弦函数可以表示为sin(theta)。
12.In statistics, we often use theta to represent an unknown parameter in our models.
在统计学中,我们常用theta来表示模型中的未知参数。
13.When calculating the area of a triangle, theta can represent one of its angles.
在计算三角形的面积时,theta可以表示其中一个角。
14.The angle of rotation in polar coordinates is usually denoted by theta.
极坐标中的旋转角度通常用theta表示。
作文
In the realm of mathematics and physics, the Greek letter theta (Θ, θ) holds significant importance. It is often used to represent angles in trigonometry, which is a branch of mathematics dealing with the relationships between the angles and sides of triangles. The use of theta in this context allows for a standardized way to denote angles, making it easier for students and professionals alike to communicate complex ideas clearly. For instance, in the equation of a circle, the angle theta can be used to describe the position of a point on the circumference in polar coordinates.Beyond geometry, theta finds its applications in various fields such as engineering, physics, and even finance. In thermodynamics, theta may symbolize temperature differences, representing how heat energy is transferred within a system. Similarly, in finance, theta is a term used in options trading to measure the rate of decline in the value of an option as it approaches its expiration date. This concept, known as 'time decay,' is crucial for traders to understand, as it directly impacts their investment strategies.Moreover, the significance of theta extends into the field of statistics, where it often represents parameters in statistical models. For example, in Bayesian statistics, theta can denote an unknown parameter that one aims to estimate based on observed data. This usage illustrates how theta serves as a bridge between theoretical concepts and practical applications across various disciplines.Understanding the multifaceted nature of theta is essential for anyone pursuing studies in mathematics or related fields. Its diverse applications underscore the interconnectedness of different scientific domains. For students, grasping the concept of theta not only aids in solving mathematical problems but also enhances their ability to think critically about how different principles interact.In conclusion, the Greek letter theta is more than just a symbol; it encapsulates a wealth of knowledge across multiple disciplines. From representing angles in geometry to denoting parameters in statistics, theta serves as a vital tool for communication and understanding in the scientific community. As we continue to explore the complexities of mathematics and its applications, the role of theta will undoubtedly remain integral to our comprehension of the world around us. Thus, embracing the concept of theta is not merely an academic exercise, but a gateway to deeper insights into the workings of various fields of study.
在数学和物理的领域中,希腊字母theta(Θ,θ)具有重要的意义。它常用于表示三角学中的角度,三角学是一个研究三角形的角和边之间关系的数学分支。在这个上下文中使用theta,使得以标准化的方式来表示角度变得更加容易,从而使学生和专业人士能够清晰地交流复杂的思想。例如,在圆的方程中,角theta可以用来描述极坐标系中圆周上某一点的位置。除了几何学,theta还在工程、物理甚至金融等多个领域中找到应用。在热力学中,theta可能象征温度差异,表示热能在系统内的转移方式。同样,在金融领域,theta是期权交易中一个术语,用来衡量期权价值随着到期日临近而下降的速度。这个概念被称为“时间衰减”,对交易者理解其投资策略至关重要。此外,theta的重要性还扩展到统计学领域,在这里它通常代表统计模型中的参数。例如,在贝叶斯统计中,theta可以表示一个未知参数,研究者希望基于观察到的数据来估计该参数。这种用法展示了theta如何在不同学科之间架起桥梁,将理论概念与实际应用联系起来。理解theta的多面性对于任何追求数学或相关领域学习的人来说都是必不可少的。它的多样化应用强调了不同科学领域之间的相互联系。对于学生而言,掌握theta的概念不仅有助于解决数学问题,还增强了他们批判性思维的能力,帮助他们理解不同原则之间的相互作用。总之,希腊字母theta不仅仅是一个符号;它蕴含着跨多个学科的丰富知识。从表示几何中的角度到在统计中表示参数,theta作为科学共同体中沟通和理解的重要工具。随着我们继续探索数学的复杂性及其应用,theta的角色无疑将继续在我们理解周围世界的过程中发挥关键作用。因此,接受theta的概念不仅仅是一种学术练习,而是深入洞察各种研究领域运作的门户。