gaussmeter
简明释义
英[ˈɡaʊsˌmiːtər]美[ˈɡaʊsˌmiːtər]
n. [电磁] 高斯计;[电磁] 磁强计(以高斯或千高斯表示的)
英英释义
A gaussmeter is an instrument used to measure the strength and direction of magnetic fields, typically expressed in units of gauss or tesla. | 高斯计是一种用于测量磁场强度和方向的仪器,通常以高斯或特斯拉为单位表示。 |
单词用法
同义词
磁力计 | The magnetometer is used to measure the strength and direction of magnetic fields. | 磁力计用于测量磁场的强度和方向。 | |
通量计 | A fluxmeter can be employed in laboratory settings to measure magnetic flux. | 通量计可以在实验室环境中用于测量磁通。 |
反义词
无 | 在真空中,没有磁场可供测量。 | ||
真空 | When there is none, the gaussmeter cannot provide any readings. | 当没有磁场时,gaussmeter无法提供任何读数。 |
例句
1.The method to check short-circuit point between parallel conductors in transformer winding by Gaussmeter and to repair fault point are introduced.
介绍了运用高斯计来探查变压器绕组内并联导线间短路点,并对故障点进行修复的方法。
2.The method to check short-circuit point between parallel conductors in transformer winding by Gaussmeter and to repair fault point are introduced.
介绍了运用高斯计来探查变压器绕组内并联导线间短路点,并对故障点进行修复的方法。
3.Researchers rely on the gaussmeter to monitor changes in magnetic fields during their studies.
研究人员依靠高斯计来监测他们研究过程中磁场的变化。
4.The gaussmeter indicated a strong magnetic field near the power lines.
在电力线路附近,高斯计显示出强烈的磁场。
5.Before starting the experiment, we calibrated the gaussmeter to ensure accurate readings.
在开始实验之前,我们校准了高斯计以确保读数准确。
6.Anomalies detected by the gaussmeter suggested a potential issue with the generator.
通过高斯计检测到的异常表明发电机可能存在问题。
7.The technician used a gaussmeter to measure the magnetic field strength around the equipment.
技术员使用高斯计来测量设备周围的磁场强度。
作文
In the world of physics and engineering, understanding magnetic fields is crucial for various applications. One of the essential tools used to measure these magnetic fields is the gaussmeter, which is an instrument specifically designed to measure the strength and direction of magnetic fields. The term gaussmeter comes from the unit of measurement called 'gauss,' named after the German mathematician and physicist Carl Friedrich Gauss, who contributed significantly to the field of magnetism.The gaussmeter operates on the principle of magnetic induction, where the device can detect the magnetic flux density in a given area. This measurement is vital in many industries, including electronics, telecommunications, and even healthcare, where magnetic fields play a significant role. For example, in MRI machines, understanding the magnetic field strength is crucial for accurate imaging and patient safety.There are different types of gaussmeters, including handheld models and more sophisticated laboratory versions. Handheld gaussmeters are particularly useful for quick field measurements, allowing technicians to assess magnetic fields in various environments, such as workplaces or near electronic devices. On the other hand, laboratory gaussmeters provide more precise measurements and often come with advanced features like data logging and computer connectivity, enabling detailed analysis of magnetic field data.Using a gaussmeter requires some knowledge of magnetic field concepts. Users must understand how to interpret the readings displayed on the device. Typically, a gaussmeter will show measurements in gauss or tesla, with one tesla being equal to 10,000 gauss. Knowing the acceptable limits of magnetic field exposure is essential for safety, especially in occupational settings where workers may be exposed to strong magnetic fields.Moreover, the gaussmeter can help in troubleshooting electrical equipment. For instance, if an electronic device is malfunctioning, measuring the magnetic field around it can reveal whether there are unexpected magnetic interferences affecting its performance. This capability highlights the importance of the gaussmeter in maintaining operational efficiency and safety in various technological applications.In conclusion, the gaussmeter is an invaluable tool in the measurement of magnetic fields. Its versatility allows it to be used across multiple disciplines, ensuring that professionals can monitor and manage magnetic field exposure effectively. As technology continues to advance, the role of the gaussmeter will likely expand, making it an essential instrument for anyone working in fields related to magnetism and electromagnetic applications. Understanding how to use a gaussmeter not only enhances our knowledge of magnetic fields but also contributes to safer work environments and improved technological performance.
在物理和工程的世界中,理解磁场对各种应用至关重要。用于测量这些磁场的基本工具之一是gaussmeter,这是一种专门设计用于测量磁场强度和方向的仪器。术语gaussmeter来自于名为“高斯”的测量单位,该单位以德国数学家和物理学家卡尔·弗里德里希·高斯命名,他在磁学领域做出了重大贡献。gaussmeter的工作原理基于磁感应,设备能够检测给定区域内的磁通密度。这一测量在许多行业中至关重要,包括电子、通信甚至医疗保健,在这些领域,磁场发挥着重要作用。例如,在MRI机器中,理解磁场强度对于准确成像和患者安全至关重要。gaussmeter有不同类型,包括手持式模型和更复杂的实验室版本。手持式gaussmeter特别适合快速现场测量,使技术人员能够评估各种环境中的磁场,例如工作场所或电子设备附近。另一方面,实验室gaussmeter提供更精确的测量,通常配备数据记录和计算机连接等高级功能,使得磁场数据的详细分析成为可能。使用gaussmeter需要对磁场概念有一定的了解。用户必须知道如何解释设备上显示的读数。通常,gaussmeter将以高斯或特斯拉为单位显示测量值,其中1特斯拉等于10,000高斯。了解磁场暴露的可接受限度对于安全至关重要,特别是在工人可能暴露于强磁场的职业环境中。此外,gaussmeter可以帮助排除电气设备故障。例如,如果电子设备出现故障,测量其周围的磁场可以揭示是否存在意外的磁干扰影响其性能。这一能力突显了gaussmeter在维持各种技术应用的操作效率和安全性方面的重要性。总之,gaussmeter是测量磁场的宝贵工具。它的多功能性使其可以在多个学科中使用,确保专业人员能够有效监测和管理磁场暴露。随着技术的不断进步,gaussmeter的作用可能会扩大,使其成为任何从事与磁学和电磁应用相关领域的人的重要仪器。了解如何使用gaussmeter不仅增强了我们对磁场的认识,还促进了更安全的工作环境和更好的技术性能。