ferromagnets
简明释义
英[/ˌfɛroʊˈmæɡnɛts/]美[/ˌfɛroʊˈmæɡnɛts/]
铁磁体
英英释义
单词用法
同义词
铁磁材料 | Ferromagnetic materials are widely used in electrical engineering. | 铁磁材料广泛应用于电气工程。 | |
磁性金属 | Many magnetic metals exhibit strong magnetic properties at room temperature. | 许多磁性金属在室温下表现出强磁性。 |
反义词
例句
1.In the paper, we focus on the mechanism and the properties of the organic ferromagnets, and a view of special applications is also displayed.
总结了有机铁磁体的特征和各类有机铁磁体的机理,并展望了有机铁磁材料的一些特殊应用前景。
2.A magnon-phonon interaction model is applied to two - dimensional insulating ferromagnets.
在二维正方绝缘铁磁系统基础上建立了一个磁振子声子相互作用模型。
3.The main progress in the studies of organic ferromagnets is introduced.
着重介绍了有机铁磁体的研究动态。
4.This is the first experimental observation of the modification of the magnetism in thin-film ferromagnets by an electric field.
这是第一次观测到电场调控金属薄膜磁性的实验工作。
5.In the paper, we focus on the mechanism and the properties of the organic ferromagnets, and a view of special applications is also displayed.
总结了有机铁磁体的特征和各类有机铁磁体的机理,并展望了有机铁磁材料的一些特殊应用前景。
6.The study of ferromagnets (铁磁体) is essential for developing new materials in physics.
对ferromagnets(铁磁体)的研究对于物理学中新材料的开发至关重要。
7.Many electronic devices use ferromagnets (铁磁体) to create strong magnetic fields.
许多电子设备使用ferromagnets(铁磁体)来产生强大的磁场。
8.Hard ferromagnets (铁磁体) are used to make permanent magnets found in speakers.
硬ferromagnets(铁磁体)用于制作扬声器中的永久磁铁。
9.In a magnetic circuit, ferromagnets (铁磁体) can significantly reduce energy losses.
在磁路中,ferromagnets(铁磁体)可以显著减少能量损失。
10.Soft ferromagnets (铁磁体) are employed in transformers due to their low coercivity.
软ferromagnets(铁磁体)因其低矫顽力而被用于变压器。
作文
Ferromagnets are materials that exhibit strong magnetic properties due to the alignment of their atomic magnetic moments. These materials can be magnetized and retain their magnetization even after the external magnetic field is removed. The phenomenon of ferromagnetism is a significant area of study in physics and materials science, as it plays a critical role in various applications, from data storage to electric motors. Understanding ferromagnets (铁磁体) is essential for anyone interested in the field of magnetism and its practical implications.The fundamental principle behind ferromagnets (铁磁体) lies in the interactions between the electrons of the atoms within the material. In ferromagnetic materials, the magnetic moments of individual atoms tend to align parallel to each other, resulting in a net magnetic moment. This alignment occurs because of exchange interactions, which are quantum mechanical effects that favor parallel alignment of neighboring spins. As a result, when a ferromagnet (铁磁体) is exposed to an external magnetic field, the magnetic moments align in the direction of the field, leading to magnetization.One of the most well-known examples of ferromagnets (铁磁体) is iron, which has been utilized for centuries in various applications. Other common ferromagnetic materials include cobalt and nickel. These metals have unique electronic structures that allow them to exhibit ferromagnetism at room temperature. However, not all materials can be classified as ferromagnets (铁磁体). For instance, materials like copper and aluminum do not show ferromagnetic properties because their atomic arrangements do not support the necessary alignment of magnetic moments.The temperature at which a ferromagnet (铁磁体) loses its magnetic properties is known as the Curie temperature. Above this temperature, thermal energy disrupts the alignment of magnetic moments, causing the material to become paramagnetic, where it only exhibits magnetism in the presence of an external magnetic field. This transition from ferromagnetism to paramagnetism is a critical factor in the design of magnetic materials for specific applications.In technological applications, ferromagnets (铁磁体) are widely used in the manufacturing of permanent magnets, transformers, and magnetic storage devices such as hard drives. The ability of ferromagnets (铁磁体) to retain magnetization makes them ideal for storing data in a non-volatile manner. Furthermore, advancements in nanotechnology have led to the development of new ferromagnetic materials with enhanced properties, opening up new possibilities for miniaturized electronic devices.In conclusion, ferromagnets (铁磁体) are crucial components in the realm of magnetism, with significant implications for both scientific research and industrial applications. Understanding the mechanisms behind their magnetic properties allows researchers and engineers to innovate and improve technologies that rely on magnetism. As we continue to explore the fascinating world of ferromagnets (铁磁体), we unlock new potential for advancements in various fields, highlighting the importance of this material class in our modern technology-driven society.
铁磁体是指由于其原子磁矩的排列而表现出强磁性特性的材料。这些材料可以被磁化,并且在外部磁场移除后仍然保持其磁化状态。铁磁现象是物理学和材料科学的重要研究领域,因为它在从数据存储到电动机等各种应用中发挥着关键作用。理解ferromagnets(铁磁体)对任何对磁学及其实际影响感兴趣的人来说都是至关重要的。ferromagnets(铁磁体)背后的基本原理在于材料内部原子之间电子的相互作用。在铁磁材料中,单个原子的磁矩往往倾向于平行排列,从而导致净磁矩的产生。这种排列发生是因为交换相互作用,这是量子力学效应,促使邻近自旋的平行排列。因此,当一个ferromagnet(铁磁体)暴露于外部磁场时,磁矩会朝向该场的方向排列,导致磁化。最著名的ferromagnets(铁磁体)实例之一是铁,几个世纪以来,它在各种应用中被利用。其他常见的铁磁材料包括钴和镍。这些金属具有独特的电子结构,使它们在室温下表现出铁磁性。然而,并非所有材料都可以被归类为ferromagnets(铁磁体)。例如,铜和铝等材料不显示铁磁性,因为它们的原子排列不支持必要的磁矩排列。ferromagnet(铁磁体)失去其磁性特性的温度称为居里温度。在此温度以上,热能破坏了磁矩的排列,导致材料变为顺磁性,在这种状态下,它仅在外部磁场存在时表现出磁性。这种从铁磁性到顺磁性的转变是设计特定应用磁性材料的关键因素。在技术应用中,ferromagnets(铁磁体)广泛用于制造永久磁铁、变压器和磁存储设备,如硬盘。ferromagnets(铁磁体)保留磁化的能力使它们非常适合以非易失性方式存储数据。此外,纳米技术的进步导致新铁磁材料的开发,这些材料具有增强的特性,为微型电子设备开辟了新的可能性。总之,ferromagnets(铁磁体)是磁学领域中的关键组成部分,对科学研究和工业应用都有重大影响。了解其磁性特性的机制使研究人员和工程师能够创新和改善依赖于磁性的技术。随着我们继续探索ferromagnets(铁磁体)的迷人世界,我们为各个领域的进步解锁了新潜力,突显了这一材料类别在我们现代技术驱动社会中的重要性。