plasmagene

简明释义

[ˈplæzməˌdʒiːn][ˈplæzməˌdʒin]

n. [遗] 细胞质基因

英英释义

A plasmagene is a term used to refer to a genetic element or factor that is located within the cytoplasm of a cell, often associated with plasmids or other extrachromosomal DNA.

plasmagene是一个术语,用于指代位于细胞质内的遗传元素或因子,通常与质粒或其他染色体外DNA相关联。

单词用法

plasmagene expression

plasmagene 表达

plasmagene transfer

plasmagene 转移

study of plasmagenes

plasmagene 的研究

role of plasmagenes

plasmagene 的角色

同义词

plasmid

质粒

Plasmids are often used in genetic engineering to clone, transfer, and manipulate genes.

质粒常用于基因工程中,以克隆、转移和操纵基因。

gene

基因

Genes are the basic unit of heredity and are responsible for the traits of an organism.

基因是遗传的基本单位,负责生物体的特征。

反义词

genome

基因组

The genome contains all the genetic information of an organism.

基因组包含了一个生物体的所有遗传信息。

chromosome

染色体

Chromosomes are structures within cells that contain DNA.

染色体是细胞内含有DNA的结构。

例句

1.Seed dormancy were generally quantitative traits influenced by a large number of genes including nuclear and plasmagene.

影响休眠性状表达的基因既有核基因,也有质基因,休眠通常表现为一种受多基因控制的数量性状。

2.Seed dormancy were generally quantitative traits influenced by a large number of genes including nuclear and plasmagene.

影响休眠性状表达的基因既有核基因,也有质基因,休眠通常表现为一种受多基因控制的数量性状。

3.The plasmagene is crucial for the development of genetically modified organisms.

质粒基因对于转基因生物的发展至关重要。

4.Researchers discovered a new plasmagene that enhances crop yield.

研究人员发现了一种新的质粒基因,可以提高作物产量。

5.The team isolated a plasmagene from bacteria that could degrade plastic waste.

团队从细菌中分离出一种可以降解塑料废物的质粒基因

6.Understanding the function of plasmagene can lead to advancements in biotechnology.

理解质粒基因的功能可以推动生物技术的进步。

7.The study focused on the role of plasmagene in plant resistance to diseases.

这项研究集中于质粒基因在植物抗病性中的作用。

作文

In the realm of genetics, the term plasmagene refers to a type of genetic material that exists outside the nucleus of a cell, typically found in the cytoplasm or within organelles such as mitochondria and chloroplasts. Unlike nuclear genes, which are inherited from both parents and are responsible for the majority of an organism's traits, plasmagenes are often associated with specific functions and can be passed down independently of the organism's chromosomal DNA. This unique characteristic makes them a fascinating subject of study in the field of molecular biology.One of the most well-known examples of plasmagene is mitochondrial DNA (mtDNA), which is inherited solely from the mother. Mitochondria are often referred to as the powerhouses of the cell, as they are responsible for producing energy through cellular respiration. The mtDNA contains genes that code for essential proteins involved in this process, highlighting the critical role that plasmagenes play in cellular function and energy production.Additionally, plasmagenes can contribute to genetic diversity within populations. In some cases, these genetic elements can undergo mutations, leading to variations that may confer advantages or disadvantages to the organism. For example, certain plasmagenes in plants can provide resistance to diseases or environmental stresses, allowing them to thrive in challenging conditions. This adaptability is crucial for the survival of species in an ever-changing environment.The study of plasmagenes has also opened new avenues for biotechnological applications. Researchers are exploring ways to harness these genetic elements for genetic engineering purposes, such as creating genetically modified organisms (GMOs) that possess desirable traits, like increased yield or pest resistance. By understanding how plasmagenes function and interact with other genetic material, scientists can develop innovative solutions to address food security and sustainability challenges.Moreover, the concept of plasmagene extends beyond traditional genetics. In the field of synthetic biology, researchers are designing artificial plasmids—small, circular pieces of DNA that can replicate independently within a cell. These synthetic plasmagenes can be engineered to perform specific functions, such as producing pharmaceuticals or biofuels. The versatility and adaptability of plasmagenes make them invaluable tools in advancing scientific research and technology.In conclusion, the term plasmagene encompasses a variety of genetic materials that exist outside the nucleus, playing essential roles in cellular function, genetic diversity, and biotechnological advancements. Understanding the significance of plasmagenes not only enhances our knowledge of genetics but also paves the way for innovative applications that can benefit society as a whole. As research continues to evolve, the exploration of plasmagenes will undoubtedly lead to new discoveries that could transform our understanding of life itself.

在遗传学领域,术语plasmagene指的是一种存在于细胞核外的遗传物质,通常位于细胞质或线粒体和叶绿体等细胞器内。与来自父母双方并负责大多数生物特征的核基因不同,plasmagenes通常与特定功能相关,并且可以独立于生物的染色体DNA遗传。这一独特特性使它们成为分子生物学研究中一个引人入胜的课题。最著名的plasmagene示例之一是线粒体DNA(mtDNA),它仅从母亲那里继承。线粒体通常被称为细胞的动力源,因为它们通过细胞呼吸产生能量。mtDNA包含编码参与这一过程的基本蛋白质的基因,突显了plasmagenes在细胞功能和能量生产中的关键作用。此外,plasmagenes可以促进种群内的遗传多样性。在某些情况下,这些遗传元素可能会发生突变,导致变异,这些变异可能为生物带来优势或劣势。例如,某些植物中的plasmagenes可以提供对疾病或环境压力的抵抗力,使它们能够在艰难条件下生存。这种适应性对于物种在不断变化的环境中的生存至关重要。对plasmagenes的研究也为生物技术应用开辟了新的途径。研究人员正在探索如何利用这些遗传元素进行基因工程,例如创造具有理想特征的转基因生物(GMO),如提高产量或抗虫害。通过理解plasmagenes的功能及其与其他遗传物质的相互作用,科学家可以开发出创新的解决方案,以应对粮食安全和可持续性挑战。此外,plasmagene的概念超越了传统遗传学。在合成生物学领域,研究人员正在设计人工质粒——小型、环状的DNA片段,可以在细胞内独立复制。这些合成的plasmagenes可以被工程化以执行特定功能,例如生产药品或生物燃料。plasmagenes的多样性和适应性使它们成为推动科学研究和技术进步的宝贵工具。总之,术语plasmagene涵盖了一系列存在于细胞核外的遗传物质,在细胞功能、遗传多样性和生物技术进步中发挥着重要作用。理解plasmagenes的意义不仅增强了我们对遗传学的知识,而且为能够惠及整个社会的创新应用铺平了道路。随着研究的不断发展,对plasmagenes的探索无疑将导致新的发现,这些发现可能会改变我们对生命本身的理解。