ions
简明释义
n. [化学]离子(ion 复数)
n. (Ions)人名;(英)艾恩斯
英英释义
Ions are charged particles that result from the loss or gain of one or more electrons by an atom or molecule. | 离子是由于原子或分子失去或获得一个或多个电子而形成的带电粒子。 |
单词用法
离子交换 | |
金属离子 |
同义词
带电粒子 | Ions are essential in the conduction of electricity in solutions. | 离子在溶液中导电至关重要。 |
反义词
中性粒子 | 中性粒子不带任何电荷。 | ||
分子 | 当原子结合在一起时会形成分子。 |
例句
1.Charged particles called ions travel along the nanowire, causing it to stretch out in length and also bend and wiggle.
被称为离子的带电粒子沿着纳米线移动,导致它伸长、弯曲和摆动。
2.Quartz is quartz—a silicon ion surrounded by four oxygen ions—there's no difference at all between two-million-year-old Pleistocene quartz and Cambrian quartz created over 500 million years ago.
石英是石英——由四个氧离子围绕的硅离子——200万年前的更新世石英和5亿年前的寒武纪石英之间没有任何区别。
3.So, that's the idea of isoelectronic ions.
好,这就是等电子离子的概念。
4.And that result is we get large arrays of ions.
结果是我们得到了很大的离子阵列。
5.Remember, ions are a little bit different.
记住,离子有些不同。
6.Electrons are small and mobile but lithium ions are much larger and slower.
电子很小可以移动,锂离子大一些移动的速度慢一些。
7.So, what's the consequence of forming these gas ions?
所以,形成这些气态离子的结果是什么呢?
8.Lead ions are significantly bigger than protons, so they carry more energy.
铅离子要比质子大得多,因此也携带着更多的能量。
9.The process of electrolysis separates compounds into their constituent ions (离子).
电解过程将化合物分离成其组成的离子(离子)。
10.In the human body, ions (离子) like sodium and potassium are crucial for nerve function.
在人体内,像钠和钾这样的离子(离子)对神经功能至关重要。
11.Ionization occurs when an atom or molecule gains or loses ions (离子).
当原子或分子获得或失去离子(离子)时,就会发生电离。
12.In a battery, chemical reactions produce charged ions (离子) that flow to generate electricity.
在电池中,化学反应产生带电的离子(离子),它们流动以产生电力。
13.Water can conduct electricity because it contains dissolved ions (离子) from salts.
水可以导电,因为它含有来自盐的溶解离子(离子)。
作文
In the realm of chemistry, understanding the concept of ions (离子) is fundamental for grasping how substances interact with one another. An ion (离子) is defined as an atom or molecule that has a net electrical charge due to the loss or gain of one or more electrons. This simple definition opens the door to a vast array of chemical phenomena that are crucial in both nature and technology.There are two primary types of ions (离子): cations and anions. Cations are positively charged ions (离子), formed when an atom loses one or more electrons. For instance, when sodium (Na) loses an electron, it becomes a sodium cation (Na+). On the other hand, anions are negatively charged ions (离子) created when an atom gains electrons. Chlorine (Cl), for example, becomes a chloride anion (Cl-) by gaining an electron. This balance of cations and anions is essential in forming ionic compounds, where the electrostatic forces between these opposite charges hold the compound together.The significance of ions (离子) extends beyond theoretical chemistry; they play a pivotal role in various biological processes. For instance, ions (离子) such as potassium (K+) and sodium (Na+) are crucial for nerve impulse transmission in our bodies. The movement of these ions (离子) across cell membranes generates electrical signals that allow communication between nerve cells. Additionally, calcium ions (离子) are vital for muscle contraction and neurotransmitter release, highlighting the importance of ions (离子) in our physiological functions.In the field of environmental science, ions (离子) also play a significant role. The presence of certain ions (离子) in water can indicate pollution levels. For example, high concentrations of nitrate ions (离子) may suggest agricultural runoff, which can lead to harmful algal blooms. Understanding the behavior of ions (离子) in water systems is crucial for maintaining healthy ecosystems and ensuring safe drinking water.Furthermore, ions (离子) are instrumental in various technological applications. In batteries, ions (离子) move between the anode and cathode during discharge and charge cycles, enabling the storage and release of energy. Lithium-ion batteries, for instance, have revolutionized portable electronics and electric vehicles due to their efficiency and capacity.In conclusion, the study of ions (离子) is integral to multiple disciplines, including chemistry, biology, environmental science, and technology. Their ability to carry electrical charges allows them to participate in a myriad of reactions and processes that sustain life and drive innovation. By understanding ions (离子), we gain insights into both the natural world and the advancements that shape our future. As we continue to explore the complexities of ions (离子), we unlock new possibilities for scientific discovery and technological progress.
在化学领域,理解ions(离子)这一概念对于掌握物质之间的相互作用至关重要。ion(离子)被定义为由于失去或获得一个或多个电子而具有净电荷的原子或分子。这个简单的定义为一系列在自然和技术中至关重要的化学现象打开了大门。ions(离子)主要有两种类型:阳离子和阴离子。阳离子是带正电荷的ions(离子),当原子失去一个或多个电子时形成。例如,当钠(Na)失去一个电子时,它就变成了钠阳离子(Na+)。另一方面,阴离子是带负电荷的ions(离子),当原子获得电子时形成。例如,氯(Cl)通过获得一个电子变成氯离子(Cl-)。这些阳离子和阴离子的平衡对于形成离子化合物至关重要,而这些相反电荷之间的静电力将化合物结合在一起。ions(离子)的重要性不仅仅局限于理论化学;它们在各种生物过程中发挥着关键作用。例如,钾(K+)和钠(Na+)等ions(离子)对于我们身体中的神经冲动传递至关重要。这些ions(离子)在细胞膜上的移动产生电信号,允许神经细胞之间的通信。此外,钙离子(Ca2+)对于肌肉收缩和神经递质释放至关重要,强调了ions(离子)在我们生理功能中的重要性。在环境科学领域,ions(离子)也发挥着重要作用。水中某些ions(离子)的存在可以指示污染水平。例如,高浓度的硝酸盐离子(NO3-)可能表明农业径流,这可能导致有害的藻类暴发。理解水系统中ions(离子)的行为对于维持健康生态系统和确保安全饮用水至关重要。此外,ions(离子)在各种技术应用中也起着重要作用。在电池中,ions(离子)在放电和充电周期中在阳极和阴极之间移动,使能量的存储和释放成为可能。例如,锂离子电池因其高效性和容量而彻底改变了便携式电子设备和电动车辆。总之,ions(离子)的研究与多个学科密切相关,包括化学、生物学、环境科学和技术。它们携带电荷的能力使它们能够参与维持生命和推动创新的无数反应和过程。通过理解ions(离子),我们能够深入了解自然界和塑造我们未来的进步。随着我们继续探索ions(离子)的复杂性,我们为科学发现和技术进步解锁了新的可能性。