fermion

简明释义

[ˈfɜːmɪɒn][ˈfɜːrmɪˌɑn]

n. 费密子(费密系统的粒子)

英英释义

A fermion is a type of subatomic particle that follows Fermi-Dirac statistics and obeys the Pauli exclusion principle, meaning that no two identical fermions can occupy the same quantum state simultaneously.

费米子是一种亚原子粒子,遵循费米-狄拉克统计,并服从泡利不相容原理,意味着没有两个相同的费米子可以同时占据相同的量子状态。

Fermions include particles such as electrons, protons, and neutrons, which make up matter.

费米子包括电子、质子和中子等粒子,它们构成了物质。

单词用法

fermion statistics

费米统计

fermion field

费米场

dirac fermion

狄拉克费米子

majorana fermion

马约拉纳费米子

fermion-antifermion pair

费米子-反费米子对

fermion mass

费米子质量

fermion creation operator

费米子产生算符

fermion number

费米子数

同义词

particle

粒子

Fermions are a type of particle that follow the Pauli exclusion principle.

费米子是一种遵循泡利不相容原理的粒子。

matter particle

物质粒子

Electrons and protons are examples of matter particles.

电子和质子是物质粒子的例子。

反义词

boson

玻色子

Photons are an example of bosons.

光子是玻色子的一个例子。

例句

1.In this paper the SLAC bag model is discussed by using the method of fermion coherent state.

作为应用费米相干态处理量子场论问题的一种尝试,本文利用费米相干态讨论了SLAC口袋模型。

2.Using the path integral method for handling the anomaly problem under the comoving representation, we present a unified scheme for deriving the bononization of fermion fields in (1+1) dimensions.

本文利用随动表象下处理反常问题的路径积分方法,给出(1+1)维空间费米场玻色化的统一推导方案。

3.A microscopic approach for studying rhe collective states of odd-mass nuclei is proposed from the viewpoint of interacting boson-fermion model.

基于相互作用玻色子-费米子模型的观点,阐述一种研究奇质量核集体态的微观方法。

4.In this paper, a kind of so (14) grand unified model which can contain two right-left fermion generations is discussed in some detail.

本文详细讨论了一类能容纳左右二代费半子的SO(14)大统一模型。

5.The present paper reports the average nucleon number density in the intrinsic states of SU(3) of the Fermion Dynamical Symmetry Model (FDSM).

给出了费米子动力学对称模型中的SU(3)对称极限的内禀态下的平均核子数密度。

6.Using the path integral method for handling the anomaly problem under the comoving representation, we present a unified scheme for deriving the bononization of fermion fields in (1+1) dimensions.

本文利用随动表象下处理反常问题的路径积分方法,给出(1+1)维空间费米场玻色化的统一推导方案。

7.Our theory can be applied not only to the alloy systems of heavy electron metals, but also to the discussion of doping effects in newly discovered heavy - fermion insulators.

该理论不仅可应用于重电子金属的合金系统,还适合于讨论最新发现的重费米子绝缘体中的掺杂效应。

8.The formalism presented here can be applied to nuclear as well as other many fermion systems in both equilibrium and nonequilibrium states.

本文的讨论也适用于处于平衡或非平衡定常态的其他多体系统。

9.The results show that the entropies of boson field and the fermion field of six dimensional non-stationary black hale have similar formulae only with a coefficient difference.

结果显示六维动态黑洞的玻色子熵和费米子熵有相同的形式,它们之间只相差一个系数。

10.Using radiant exitance of Schwarzschild black hole, the radiation spectrums of Fermion field and Boson field of black hole are calculated out, and Wien's displacement laws are also obtained.

利用史瓦西黑洞的辐出度,导出了黑洞费米子场和玻色子场的辐射谱及其对应的维恩位移定律,并且得出二者的辐射谱及定律略有不同。

11.In particle physics, a fermion 费米子 is a class of particles that follow the Pauli exclusion principle.

在粒子物理学中,fermion 费米子 是遵循泡利不相容原理的一类粒子。

12.Electrons are considered fermions 费米子 because they have half-integer spin.

电子被认为是fermions 费米子,因为它们具有半整数自旋。

13.The behavior of fermions 费米子 is crucial for understanding the structure of matter.

理解物质结构时,fermions 费米子 的行为至关重要。

14.Quarks, which make up protons and neutrons, are also classified as fermions 费米子.

构成质子和中子的夸克也被归类为fermions 费米子

15.Superconductors exhibit unique properties due to the pairing of fermions 费米子 at low temperatures.

超导体由于低温下fermions 费米子 的配对而表现出独特的性质。

作文

In the realm of quantum physics, understanding the fundamental particles that constitute our universe is crucial. Among these particles, there exists a category known as fermions, which are essential for constructing matter. Fermions are defined by their half-integer spin, which distinguishes them from another class of particles called bosons, which have integer spins. This distinction is not merely academic; it has profound implications for the behavior of matter at the microscopic level.The concept of fermions was first introduced in the early 20th century, with the work of physicists such as Enrico Fermi and Paul Dirac. They discovered that fermions obey the Pauli exclusion principle, which states that no two identical fermions can occupy the same quantum state simultaneously. This principle is fundamentally responsible for the structure of atoms, as it prevents electrons (which are fermions) from collapsing into the nucleus. Instead, electrons occupy distinct energy levels around the nucleus, creating the diverse array of elements we observe in nature.The significance of fermions extends beyond atomic structure. In condensed matter physics, fermions play a crucial role in understanding phenomena such as electrical conductivity and magnetism. For instance, in metals, the conduction electrons are fermions that move freely through the lattice of positively charged ions, allowing for the flow of electricity. The interactions between these fermions lead to various phases of matter, including superconductivity, where electrical resistance drops to zero under certain conditions.Moreover, fermions are not limited to electrons; they include quarks, which are the building blocks of protons and neutrons. Each particle in the universe is made up of fermions and bosons working together in harmony. The intricate dance of these particles forms the basis of all matter, from the smallest atoms to the largest galaxies.In the field of particle physics, experiments conducted in large particle accelerators like the Large Hadron Collider (LHC) have provided deeper insights into the nature of fermions. Researchers have discovered various types of fermions, such as leptons (which include electrons and neutrinos) and baryons (which include protons and neutrons). Understanding these particles helps scientists explore the fundamental forces of nature and the origins of mass, as described by the Higgs mechanism.As we delve deeper into the universe's mysteries, the study of fermions remains a vibrant area of research. Scientists continue to investigate how fermions interact with each other and with bosons, leading to new discoveries that challenge our understanding of physics. The implications of fermions stretch far beyond theoretical physics; they impact technologies such as semiconductors, lasers, and even quantum computers, which rely on the principles governing fermions and their interactions.In conclusion, fermions are a fundamental component of our universe, shaping the very fabric of matter and influencing the laws of physics. Their unique properties and behaviors are essential for understanding everything from atomic structure to advanced technological applications. As we continue to explore the quantum world, the study of fermions will undoubtedly reveal more about the nature of reality itself.

在量子物理的领域中,理解构成我们宇宙的基本粒子至关重要。在这些粒子中,有一种被称为费米子的类别,它们是构建物质的基础。费米子以其半整数自旋而定义,这使它们与另一类粒子——玻色子区分开来,后者具有整数自旋。这一区分不仅仅是学术上的,它对微观层面上物质的行为有深远的影响。费米子的概念最早是在20世纪初由物理学家恩里科·费米和保罗·狄拉克提出的。他们发现,费米子遵循泡利不相容原理,该原理指出,没有两个相同的费米子可以同时占据相同的量子态。这一原理是原子结构的根本原因,因为它阻止电子(作为费米子)坍缩到原子核中。相反,电子围绕原子核占据不同的能级,形成了我们在自然界中观察到的各种元素。费米子的重要性不仅限于原子结构。在凝聚态物理学中,费米子在理解电导率和磁性等现象方面起着关键作用。例如,在金属中,导电电子是自由穿过正电荷离子晶格的费米子,从而允许电流的流动。这些费米子之间的相互作用导致了各种物质相的出现,包括超导性,在某些条件下电阻降至零。此外,费米子不仅限于电子;它们还包括夸克,后者是质子和中子的构建块。宇宙中的每种粒子都是由费米子和玻色子共同工作而形成的。这些粒子的复杂舞蹈构成了所有物质的基础,从最小的原子到最大的星系。在粒子物理学领域,像大型强子对撞机(LHC)这样的粒子加速器中的实验提供了对费米子性质的更深入的见解。研究人员发现了多种类型的费米子,例如轻子(包括电子和中微子)和重子(包括质子和中子)。理解这些粒子有助于科学家探索自然的基本力和质量的起源,如希格斯机制所描述的那样。随着我们深入探讨宇宙的奥秘,对费米子的研究仍然是一个充满活力的研究领域。科学家们继续研究费米子如何相互作用以及与玻色子的相互作用,从而带来挑战我们物理理解的新发现。费米子的影响远远超出了理论物理,它们对半导体、激光甚至量子计算机等技术产生了影响,这些技术依赖于支配费米子及其相互作用的原理。总之,费米子是我们宇宙的基本组成部分,塑造了物质的基本结构并影响物理法则。它们独特的属性和行为对于理解从原子结构到先进技术应用的方方面面至关重要。随着我们继续探索量子世界,费米子的研究无疑将揭示更多关于现实本质的真相。