phasor
简明释义
n. [物] 相量;矢量;彩色信息矢量
英英释义
A phasor is a complex number representing the magnitude and phase of a sinusoidal function, often used in electrical engineering and signal processing. | 相量是一个复数,表示正弦函数的幅值和相位,通常用于电气工程和信号处理。 |
单词用法
相量图;矢量图 |
同义词
矢量 | The phasor representation simplifies the analysis of AC circuits. | 相量表示简化了交流电路的分析。 |
反义词
标量 | 标量量只有大小,没有方向。 | ||
静态 | Static analysis is used to evaluate the system without considering time-varying factors. | 静态分析用于评估系统,而不考虑随时间变化的因素。 |
例句
1.Here we review simply some concepts concerning transform, and then introduce the phasor analysis.
本文首先简述一般变换法的有关概念,然后者重论述相量法。
2.A qualitative explanation of the action of these asymmetries is presented by using equivalent circuits and phasor diagram.
对上述不对称因素的作用,利用等效电路和相量图作了定性的说明。
3.The testing software TS-1 of a sampling unit in the distributed dynamic phasor monitoring system is discussed.
详细介绍了分布式动态相量监测系统数据采集单元的测试软件TS - 1。
4.This paper analyzes the measuring errors of the phasor measurement unit (PMU) and points out the necessity of state estimation based on PMU measurement.
分析了相量量测装置的量测误差情况,指出了相量量测参与状态估计计算的必要性。
5.Based on the Global Positioning system (GPS) technology, this paper Presents a method of synchronized phasor measurement in Power systems.
利用全球定位系统(GPS)技术可方便地实现电力系统的同步相量测量。
6.The synchronized phasor measurement units (PMU) is significant to the wide-area protection and stability control in modern power system.
在现代电力系统广域保护和稳定控制系统中,同步相量测量单元(PMU)起着重要作用。
7.By converting voltages into phasors 相量, we can use complex numbers to solve circuit problems.
通过将电压转换为 相量 phasors,我们可以使用复数来解决电路问题。
8.In electrical engineering, a phasor 相量 is used to represent sinusoidal functions in a simplified form.
在电气工程中,相量 phasor 用于以简化的形式表示正弦函数。
9.The phasor 相量 diagram helps visualize the relationship between voltage and current in an AC system.
相量 phasor 图有助于可视化交流系统中电压和电流之间的关系。
10.The concept of phasor 相量 allows engineers to analyze AC circuits more easily.
相量 phasor 的概念使工程师能够更容易地分析交流电路。
11.In control systems, phasor 相量 analysis is essential for understanding system stability.
在控制系统中,相量 phasor 分析对于理解系统稳定性至关重要。
作文
In the field of electrical engineering, the concept of a phasor is pivotal for understanding alternating current (AC) circuits. A phasor is a complex number that represents the amplitude and phase of a sinusoidal function, typically used to simplify the analysis of AC waveforms. By converting time-dependent sinusoidal signals into their corresponding phasor forms, engineers can leverage the power of complex arithmetic to solve circuit problems more efficiently. This transformation allows for the use of techniques such as superposition and impedance analysis, which are essential in the design and analysis of electrical systems.The representation of a phasor involves using polar coordinates, where the magnitude represents the peak value of the sinusoidal signal, and the angle indicates the phase shift relative to a reference waveform. For instance, if we have an AC voltage waveform described by the equation V(t) = Vm sin(ωt + φ), we can express this in phasor notation as V = Vm∠φ. This notation simplifies calculations, particularly when dealing with multiple sources or loads in a circuit.One significant advantage of using phasors is their ability to facilitate the analysis of circuits at steady state. When circuits are driven by sinusoidal sources, the voltages and currents can be treated as phasors, allowing for straightforward calculations of quantities like total impedance, current, and voltage drops across components. The use of phasors also extends to power calculations, where real, reactive, and apparent power can be easily determined using the relationships established by phasor diagrams.Moreover, phasors play a crucial role in understanding resonance in RLC circuits. When the frequency of the applied AC signal matches the natural frequency of the circuit, resonance occurs, leading to significant increases in current and voltage amplitudes. By analyzing the phasor relationships in these scenarios, engineers can predict the behavior of the circuit and design accordingly to ensure stability and performance.In practical applications, phasors are utilized in various devices, including oscilloscopes and spectrum analyzers, which help visualize and analyze the behavior of AC signals. These tools often display phasor representations, making it easier for engineers to interpret complex waveforms and identify issues within electrical systems.Overall, the concept of a phasor is fundamental to the study and application of AC circuits. It provides a powerful mathematical framework that simplifies the analysis and design of electrical systems, enabling engineers to tackle complex problems with greater efficiency. As technology continues to evolve, the relevance of phasors in electrical engineering will undoubtedly persist, highlighting their importance in both theoretical and practical contexts.
在电气工程领域,phasor的概念对于理解交流电(AC)电路至关重要。phasor是一个复数,表示正弦函数的幅度和相位,通常用于简化交流波形的分析。通过将时间依赖的正弦信号转换为其对应的phasor形式,工程师可以利用复数算术的优势更高效地解决电路问题。这种变换使得可以使用如叠加原理和阻抗分析等技术,这些在电气系统的设计和分析中是必不可少的。phasor的表示涉及使用极坐标,其中幅度表示正弦信号的峰值,而角度则表示相对于参考波形的相位移。例如,如果我们有一个由方程V(t) = Vm sin(ωt + φ)描述的交流电压波形,我们可以将其用phasor符号表示为V = Vm∠φ。这种符号简化了计算,特别是在处理电路中的多个源或负载时。使用phasors的一个显著优势是它们能够促进稳态电路的分析。当电路由正弦源驱动时,电压和电流可以被视为phasors,从而允许直接计算总阻抗、电流和元件上的电压降。使用phasors还扩展到功率计算,其中可以轻松确定实际功率、无功功率和视在功率,这些都是通过phasor图建立的关系来实现的。此外,phasors在理解RLC电路的共振中起着至关重要的作用。当施加的交流信号的频率与电路的自然频率匹配时,会发生共振,导致电流和电压幅度显著增加。通过分析这些场景中的phasor关系,工程师可以预测电路的行为,并据此进行设计,以确保稳定性和性能。在实际应用中,phasors被用于各种设备,包括示波器和频谱分析仪,这些工具有助于可视化和分析交流信号的行为。这些工具通常显示phasor表示,使工程师更容易解释复杂波形并识别电气系统中的问题。总的来说,phasor的概念是交流电路研究和应用的基础。它提供了一个强大的数学框架,简化了电气系统的分析和设计,使工程师能够更高效地解决复杂问题。随着技术的不断发展,phasors在电气工程中的相关性无疑会持续,突显其在理论和实践中的重要性。