chromatid

简明释义

[ˈkrəʊmətɪd][ˈkroʊmətɪd]

n. [遗] 染色单体,染色半体;染色分体

英英释义

A chromatid is one of the two identical halves of a replicated chromosome, which are joined together at a region called the centromere.

染色单体是复制染色体的两个相同部分之一,这两个部分通过称为着丝粒的区域连接在一起。

单词用法

sister chromatid

姊妹染色半体

同义词

sister chromatid

姐妹染色单体

During cell division, sister chromatids are pulled apart to ensure each daughter cell receives the correct number of chromosomes.

在细胞分裂过程中,姐妹染色单体被拉开,以确保每个子细胞获得正确数量的染色体。

chromosomal arm

染色体臂

Each chromosomal arm contains genetic information that is crucial for the organism's development.

每个染色体臂包含对生物体发育至关重要的遗传信息。

反义词

chromosome

染色体

Each chromosome consists of two chromatids during cell division.

在细胞分裂期间,每条染色体由两个染色单体组成。

unreplicated chromosome

未复制的染色体

A chromosome is a structure that carries genetic information.

染色体是携带遗传信息的结构。

例句

1.The types of the structural chromosome aberration mainly were chromatid gap, chromatid break and deletion.

结构畸变类型主要是单体裂隙、单体断裂和缺失。

2.Conclusion it is recommended that sister chromatid exchange test is an effective in vitro detecting method for mutagenicity of dental materials.

结论体外姐妹染色单体互换试验可推荐作为一项检测口腔材料潜在致突变性的体外评价方法。

3.The central axial area of each chromatid is a low electronic density region or chromatin free compartment, in which there are lots of RNP.

在染色体横切面中,可见染色体中央有一低电子密度的无染色质区,该区内有大量RNP物质。

4.Methods:Sister chromatid exchange(SCE) was sued in human lymphocytes and plant root tip cells.

方法:蚕豆、大麦和人外周淋巴细胞姐妹染色单体交换(SCE)。

5.Structurally, the aberrations of the chromosome-type break, chromatid break, double minute chromosome were also remarkably different (P<0.01).

在结构上,染色体型断裂、染色单体型断裂、双着丝粒、双微小体这些畸变,差异也非常显著(P<0.01)。

6.Several studies have shown that SO2 and its derivatives could induce chromosomal aberrations, sister chromatid exchanges and micronuclei in human blood lymphocyte, bone marrow cell in mice and CHL.

研究发现,SO_2及其衍生物可引起人外周血淋巴细胞、小鼠骨髓细胞、中国仓鼠肺成纤维细胞等哺乳动物细胞的染色体畸变、姊妹染色单体交换及微核的形成。

7.The separation of the chromatids 染色单体 occurs during anaphase.

在后期,染色单体的分离发生。

8.Before mitosis, DNA replication results in two chromatids 染色单体 for each chromosome.

在有丝分裂之前,DNA复制导致每个染色体形成两个染色单体

9.During cell division, each chromosome consists of two sister chromatids 染色单体.

在细胞分裂过程中,每个染色体由两个姐妹染色单体组成。

10.Each chromatid 染色单体 carries identical genetic information.

每个染色单体携带相同的遗传信息。

11.In a karyotype analysis, scientists look for abnormalities in the number of chromatids 染色单体.

在核型分析中,科学家寻找染色单体数量的异常。

作文

In the intricate world of biology, understanding the fundamental components of cells is crucial for grasping how life functions at a microscopic level. One such component is the chromatid, which plays a vital role during cell division. A chromatid is one half of a duplicated chromosome, and it is essential for ensuring that genetic information is accurately transmitted from one generation of cells to the next. In this essay, I will explore the significance of chromatids in the process of cell division, specifically during mitosis and meiosis, and how they contribute to genetic diversity.During the process of cell division, particularly mitosis, the cell goes through several phases: prophase, metaphase, anaphase, and telophase. Before mitosis begins, DNA replication occurs, resulting in two identical copies of each chromosome, known as sister chromatids. These sister chromatids are held together by a region called the centromere. This structure is crucial because it ensures that when the cell divides, each new daughter cell receives an identical set of chromosomes.In prophase, the chromatin condenses to form visible chromosomes, each consisting of two sister chromatids. As the cell progresses into metaphase, these chromosomes align at the cell's equatorial plane. The spindle fibers, which are protein structures that help separate the chromatids, attach to the centromeres. This alignment is critical for the accurate segregation of chromosomes; any errors during this phase can lead to cells with abnormal numbers of chromosomes, which can have serious implications for organismal development and health.As the cell enters anaphase, the centromeres split, and the sister chromatids are pulled apart towards opposite poles of the cell. This separation ensures that each daughter cell will receive an identical set of chromosomes. Once the chromatids reach the poles, the cell undergoes telophase, where the nuclear membrane re-forms around each set of chromosomes, and the cell ultimately divides into two daughter cells, each containing the same genetic material.Meiosis, on the other hand, is a specialized form of cell division that produces gametes, or sex cells. During meiosis, the process of chromatid formation is slightly different. After the initial DNA replication, homologous chromosomes pair up, and crossing over can occur, leading to genetic recombination. This means that the resulting chromatids are not identical, which increases genetic diversity among offspring. The first meiotic division separates homologous chromosomes, while the second division separates the sister chromatids, similar to mitosis.The role of chromatids extends beyond just the mechanics of cell division. They are also integral to the study of genetics and heredity. Understanding how chromatids function allows scientists to unravel the complexities of genetic disorders and inheritance patterns. For example, if there is a mutation in a gene on one of the chromatids, it can lead to diseases like cancer, where the regulation of cell division becomes disrupted.In conclusion, chromatids are fundamental to the processes of mitosis and meiosis, ensuring that genetic material is accurately replicated and distributed during cell division. Their role in promoting genetic diversity through meiosis is also essential for evolution and adaptation in living organisms. By studying chromatids, scientists gain valuable insights into the mechanisms of life, paving the way for advancements in medical research and biotechnology.

在生物学的复杂世界中,理解细胞的基本组成部分对于掌握生命在微观层面上如何运作至关重要。其中一个组成部分就是染色单体,它在细胞分裂过程中发挥着重要作用。染色单体是复制染色体的一半,对于确保遗传信息从一个细胞世代准确传递到下一个世代至关重要。在这篇文章中,我将探讨染色单体在细胞分裂过程中的重要性,特别是在有丝分裂和减数分裂中,以及它们如何促进遗传多样性。在细胞分裂的过程中,特别是有丝分裂,细胞经历几个阶段:前期、中期、后期和末期。在有丝分裂开始之前,DNA复制发生,导致每条染色体产生两个相同的副本,称为姐妹染色单体。这些姐妹染色单体通过一个称为着丝粒的区域结合在一起。这个结构至关重要,因为它确保当细胞分裂时,每个新的子细胞接收到一组相同的染色体。在前期,染色质凝缩形成可见的染色体,每个染色体由两个姐妹染色单体组成。当细胞进入中期时,这些染色体排列在细胞的赤道平面上。纺锤体纤维,即帮助分离染色单体的蛋白质结构,附着在着丝粒上。这种排列对于染色体的准确分离至关重要;在这个阶段的任何错误都可能导致细胞具有异常数量的染色体,这对生物的发育和健康有严重影响。当细胞进入后期时,着丝粒分裂,姐妹染色单体被拉向细胞的两极。这种分离确保每个子细胞将获得一组相同的染色体。一旦染色单体到达极点,细胞进入末期,核膜重新形成在每组染色体周围,细胞最终分裂成两个子细胞,每个子细胞都含有相同的遗传物质。另一方面,减数分裂是一种特殊的细胞分裂形式,产生配子或性细胞。在减数分裂过程中,染色单体的形成过程略有不同。在初始的DNA复制之后,同源染色体配对,并且可以发生交叉,导致遗传重组。这意味着所产生的染色单体并不是相同的,从而增加了后代的遗传多样性。第一次减数分裂分离同源染色体,而第二次分裂则分离姐妹染色单体,类似于有丝分裂。染色单体的作用不仅限于细胞分裂的机制。它们也是遗传学和遗传研究的重要组成部分。理解染色单体的功能使科学家能够揭示遗传疾病和遗传模式的复杂性。例如,如果某个染色单体上的基因发生突变,可能导致癌症等疾病,其中细胞分裂的调控变得失常。总之,染色单体是有丝分裂和减数分裂过程中不可或缺的,确保遗传物质在细胞分裂过程中被准确复制和分配。它们在减数分裂中促进遗传多样性的作用对于生物的进化和适应也是至关重要的。通过研究染色单体,科学家获得了对生命机制的宝贵见解,为医学研究和生物技术的进步铺平了道路。