thymine
简明释义
n. [生化] 胸腺嘧啶
英英释义
单词用法
胸腺嘧啶碱基 | |
DNA中的胸腺嘧啶 | |
胸腺嘧啶二聚体 | |
胸腺嘧啶与腺嘌呤的配对 | |
胸腺嘧啶核苷酸 | |
DNA结构中的胸腺嘧啶 |
同义词
胸腺嘧啶 | 胸腺嘧啶是DNA分子中的四种核苷酸碱基之一。 | ||
胸苷 | Thymidine is often used in cell culture to promote cell growth. | 胸苷常用于细胞培养以促进细胞生长。 |
反义词
腺嘌呤 | 腺嘌呤在DNA中与胸腺嘧啶配对。 |
例句
1.What relative proportions of adenine, guanine, thymine, and cytosine would you expect to find in the two DNA samples? What assumptions have you made?
在这两个DNA样品中腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶之间的相互比例存在怎样的关系?
2.The genetic information of all living cells is stored in the DNA composed of the four canonical bases adenine (a), cytosine (c), guanine (g) and thymine (t).
所有活细胞的基因信息都储存在由四种碱基,即腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)构成的DNA里。
3.Then they timed the reactions that caused the new thymine bonds to form.
然后他们记录了产生新的胸腺嘧啶键形成的反应。
4.Adenine and guanine are purines and cytosine and thymine are pyrimidines.
腺嘌呤和鸟嘌呤是嘌呤和胞嘧啶和胸腺嘧啶是嘧啶。
5.He USES zeroes and ones to represent the very first chemical building blocks of life (most likely compounds based on adenine, thymine, guanine, cytosine or uracil).
他用许多0和1来表示最早期时生命的化学成分(很可能是由腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶和尿嘧啶组成的化合物)。
6.Thymine or thymine nucleotide concentration was all disqulified.
胸腺嘧啶或胸腺嘧啶核苷均不合格。
7.DPD is the first rate-limiting enzyme in the catabolism of uracil and thymine, and affects DNA synthesis by decreasing the level of uracil and thymine, the necessary material for DNA synthesis.
DPD是尿嘧啶和胸腺嘧啶分解过程中的第一限速酶,可降低用于DNA合成的尿嘧啶和胸腺嘧啶的水平而影响DNA的合成。
8.The only difference is that in the RNA copy, thymine is replaced with the closely related base uracil, commonly abbreviated u.
唯一的区别在于,在RNA复制中,胸腺嘧啶被密切联系的、常被缩写为U的碱基尿嘧啶替换。
9.This article's examples use DNA, which consists of two strands of adenine (A), cytosine (C), thymine (T), and guanine (G) nucleotides.
本文的示例使用DNA,DNA由腺嘌呤(A)、胞嘧啶(C)、胸腺嘧啶(T)和鸟嘌呤(G)组成的核苷酸双螺旋组成。
10.Researchers are studying how thymine affects DNA stability.
研究人员正在研究胸腺嘧啶如何影响DNA的稳定性。
11.In DNA, thymine is one of the four nucleobases that pairs with adenine.
在DNA中,胸腺嘧啶是四种核苷酸之一,与腺嘌呤配对。
12.During DNA replication, thymine must be accurately paired with adenine.
在DNA复制过程中,胸腺嘧啶必须与腺嘌呤准确配对。
13.Some viruses have evolved to utilize thymine in their own genetic material.
一些病毒已经进化出在其自身遗传物质中利用胸腺嘧啶。
14.The absence of thymine can lead to mutations in the genetic code.
缺乏胸腺嘧啶可能导致遗传密码中的突变。
作文
In the realm of molecular biology, the importance of nucleotides cannot be overstated. Among these essential building blocks of DNA, one particular nucleotide stands out: thymine. 胸腺嘧啶 is a pyrimidine base that plays a crucial role in the structure of DNA. It pairs with adenine, another nucleotide, to form the rungs of the DNA ladder. This pairing is vital for the stability and integrity of the genetic code, which is fundamental to all living organisms. Understanding thymine and its functions can provide insights into various biological processes, including replication, transcription, and mutation. The structure of thymine is relatively simple compared to other nucleotides. It consists of a six-membered ring containing two nitrogen atoms, a carbonyl group, and a methyl group. This unique structure allows thymine to form hydrogen bonds with adenine, ensuring accurate base pairing during DNA replication. The specific pairing between thymine and adenine is critical; any alteration can lead to mutations, which may have significant consequences for an organism's health and development. Moreover, thymine is not only important in DNA but also plays a role in RNA synthesis. Although RNA typically contains uracil instead of thymine, the understanding of thymine helps elucidate the differences between DNA and RNA. In the process of transcription, when DNA is converted into RNA, the presence of thymine is replaced by uracil. This substitution is an example of how nature has adapted different nucleotides for specific functions within the cell. The significance of thymine extends beyond its structural role. It is also involved in cellular metabolism and the synthesis of other biomolecules. For instance, thymine is derived from the amino acid aspartic acid and plays a part in the production of deoxythymidine triphosphate (dTTP), which is essential for DNA synthesis. A deficiency in thymine can lead to severe health issues, such as beriberi, a condition characterized by nerve damage and cardiovascular problems. In recent years, research has highlighted the potential implications of thymine in cancer biology. Abnormalities in the metabolism of nucleotides, including thymine, can lead to uncontrolled cell division and tumor growth. Understanding how thymine interacts with other molecules in the body could pave the way for new therapeutic strategies aimed at targeting cancer cells specifically. In conclusion, thymine is a vital component of the genetic code, playing a key role in DNA structure and function. Its significance extends beyond mere structural integrity; it is involved in crucial biological processes, including metabolism and gene expression. As research continues to explore the complexities of nucleotides, the role of thymine will undoubtedly remain a focal point in understanding the molecular mechanisms that underpin life. By grasping the importance of thymine, we gain a deeper appreciation for the intricate processes that sustain living organisms, highlighting the elegance of molecular biology.
在分子生物学领域,核苷酸的重要性不容小觑。在这些DNA的基本构建块中,有一个特定的核苷酸脱颖而出:thymine。胸腺嘧啶是一种嘧啶碱基,在DNA的结构中扮演着至关重要的角色。它与另一种核苷酸腺嘌呤配对,形成DNA梯子的横档。这种配对对遗传密码的稳定性和完整性至关重要,而遗传密码是所有生物体的基础。理解thymine及其功能可以提供对各种生物过程的深入见解,包括复制、转录和突变。thymine的结构相对简单,与其他核苷酸相比。它由一个包含两个氮原子、一个羰基和一个甲基的六元环组成。这种独特的结构使得thymine能够与腺嘌呤形成氢键,确保在DNA复制过程中准确的碱基配对。thymine与腺嘌呤之间的特定配对至关重要;任何改变都可能导致突变,这可能对生物体的健康和发育产生重大影响。此外,thymine不仅在DNA中重要,还在RNA合成中发挥作用。尽管RNA通常含有尿嘧啶而不是thymine,但对thymine的理解有助于阐明DNA和RNA之间的差异。在转录过程中,当DNA转化为RNA时,thymine的存在被尿嘧啶替代。这一替代是自然如何为细胞内特定功能适应不同核苷酸的一个例子。thymine的重要性不仅限于其结构角色。它还参与细胞代谢和其他生物分子的合成。例如,thymine源自氨基酸天冬氨酸,并在去氧胸苷三磷酸(dTTP)的产生中发挥作用,这对DNA合成至关重要。缺乏thymine可能导致严重的健康问题,如脚气病,这是一种以神经损伤和心血管问题为特征的疾病。近年来的研究强调了thymine在癌症生物学中的潜在影响。包括thymine在内的核苷酸代谢异常可能导致细胞不受控制的分裂和肿瘤生长。理解thymine在体内与其他分子的相互作用可能为针对癌细胞的新治疗策略铺平道路。总之,thymine是遗传密码的重要组成部分,在DNA的结构和功能中发挥着关键作用。它的重要性不仅仅局限于结构完整性;它参与了重要的生物过程,包括代谢和基因表达。随着研究不断探索核苷酸的复杂性,thymine的作用无疑将继续成为理解支撑生命的分子机制的重点。通过掌握thymine的重要性,我们对维持生物体的复杂过程有了更深刻的认识,突显了分子生物学的优雅。